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Data define scientific research. While researchers in the past
published data in print-only venues that were hard to

find, nowadays data are mostly published online. In environ-
mental science, the increase in data accessibility allows scientists
to conduct regional water quality assessments using integrated
data sets.1,2 As data searching becomes easier, however,
compiling data from multiple sources remains difficult because
of issues related to data definition, structure, and integrity.
Using our recent research as an example, this viewpoint clarifies
challenges in integrating water quality data, and demonstrates
the need to establish standards for data management. Rather
than advocating “a complete fix” that may never happen,
however, we advocate for simply one baby step to grow
understanding of water quality. Each such small step will attract
more water quality specialists to discover what can be learned
with “big data”.
We recently studied the impacts of shale gas extraction on

water quality in Pennsylvania,1 using four online databases:
Water Quality Portal (WQP) sponsored by National Water
Quality Monitoring Council (https://www.waterqualitydata.
us/), the Susquehanna River Basin Commission (SRBC,
http://mdw.srbc.net/waterqualityportal), ShaleNetwork (ac-
cessed through CUAHSI’s HydroClient, http://data.cuahsi.
org/), and Critical Zone Observatory (CZO, http://www.czo.
psu.edu/). These innovative data portals have revolutionized

water data discovery. As we learned, however, the easy
discovery also highlighted other difficulties in data integration.

Data Collection and Screening. Mostly we were able to
find the metadata that explains data structures and definitions
(e.g., “User Guide” in WQP). However, some instructions were
confusing or were unavailable, and we had to carefully inspect
the data to make inferences. A metadata dictionary is essential
to integrate data sets.
After data downloading, we screened and removed irrelevant

data. For example, for the WQP data set, we determined that
23 out of 63 attributes (i.e., columns) were relevant to our
question. We then selected 83 of 1556 chemical analytes of
relevance to shale gas contamination. We also restricted the
“sample media” to “streams/rivers” since we were interested in
surface water only. The final resulting data set left ∼21% of the
initially downloaded data.

Data Cleaning. This step included identification and
correction of erroneous or implausible data. Data cleaning is
often overlooked as compared to data analysis and
interpretation, perhaps because it is often assumed that data
are thoroughly reviewed by providers and can be used as “plug
and play”. This assumption is common, for example, when data
come from government agencies. However, inconsistency in
data definitions and mistakes happen everywhere.
The most common problem is inconsistency in variable

names and units. We discovered 361 variable-unit combinations
for 83 analytes. For nitrate alone, there were a total of 14
combinations (Table 1). If we had not standardized the data
set, we would have lost data during querying due to unmatched
variable names or our results would not have been trustworthy
because of incorrect values (i.e., different units).
Other common problems included different codes for

missing values (e.g., −9999, −8888) and mix of numerical
and textural values (e.g., “NA”, “No Data”, “NULL” in a
numerical field as “no data”). Issues of data integrity drove us to
remove 42,525 values (about 1.3%).
Data cleaning also involved searching for redundancy.

Redundancy becomes more problematic when data are
compiled from multiple sources. We assumed records were
duplicated when they were collected from the same location
(latitude, longitude) at the same time with identical data values
and units for the same analyte. A total of 194,864 redundant
data values (6%) were removed.

Data Integration. After cleaning, we had to define a
common terminology and data structure to integrate all data
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sets into a single queryable database. Ontologies provide a way
to do this.3,4 In our project, we used a modified version of the
Observations Data Model (ODM) from CAUHSI (https://
www.cuahsi.org/). Accordingly, we also compiled a data
dictionary to map our controlled vocabulary onto the terms
used in original databases. For example, we assumed “filtered”
water data should include data labeled “Dissolved”, “Filterable”,
and “Filtered” in the original data sets. We likewise assumed
that data could be labeled “Unfiltered” if they were originally
labeled as “Total”, “Total Recoverable”, “Recoverable”, or
“Unfiltered”. By combining data sets we were forced to lump
some subtle differences in sample type.
Finally, the integrated and cleaned water quality data were

stored as a relational database. All variables can now be easily
queried and exported in a common format and used in
programs for statistical analysis, data modeling and visual-
ization. This experience leads us to advocate standardization in
water data management to limit the time and effort needed for
cleaning and integration.
A Way Forward. It would be efficient if we could agree to

keep all water data “uniform” in all aspects of data from
sampling, analysis, reporting, to storage. But uniformity will
only be achieved in small steps. Even large data-sharing
communities such as the worldwide network of Critical Zone
Observatories do not agree upon standards for sampling and
analysis. In fact, standardization is antithetical to the arc of
chemical science where newly discovered analytical techniques
are continually adopted.
Instead, we advocate an obvious baby step forward to “partial

standardization”. Each such step clarifies what we can do with
bigger data sets and makes the next step easier. The first small
step is to agree to report data in standard variable names and

units with the same notation for censored or lacking data. It
sounds easy but agreements among data providers are
notoriously hard to reach. Achieving this step would lead to
other small steps toward standard publishing formats such as
ODM. We must stop trying to solve the entire data
management problem in one big step. Rather, such small
achievable steps must be pursued until more environmental
chemists see the utility and power of “big data” and demand the
harder agreements. Ten years ago, we lacked online data
portals. As we discover data more easily nowadays, we clearly
see how data and environmental scientists could work together
to assess water quality in novel ways.1,2,5 Surely, we believe that
each baby step in “data standardization” would lead to a big
leap toward developing knowledge from numbers in regional
analysis of water quality.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: xzniu@psu.edu.
ORCID
Xianzeng Niu: 0000-0002-1702-5381
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Niu, X.; Wendt, A.; Li, Z.; Agarwal, A.; Xue, L.; Gonzales, M.;
Brantley, S. L., Detecting the effects of coal mining, acid rain, and
natural gas extraction in Appalachian basin streams in Pennsylvania
(USA) through analysis of barium and sulfate concentrations. Environ.
Geochem. Health 2017, DOI: 10.1007/s10653-017-0031-6.
(2) Raymond, P. A.; Hartmann, J.; Lauerwald, R.; Sobek, S.;
McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.;
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Table 1. Variable-Unit Combinations for Nitrate Found in
Pennsylvania Water Quality Data Compiled from Multiple
Data Sources (See Text for Details)

variable unit counts
new

variable new unit
data
source

nitrate μmol/L 45 Nitrate μg
Nitrate/L

CZO

nitrate μM 406 Nitrate μg
Nitrate/L

CZO

Nitrate-N mg/l 749 Nitrate μg
Nitrate/L

SRBC

Nitrate-N
D

mg/l 1940 Nitrate μg
Nitrate/L

SRBC

Nitrate-N
T

mg/l 5208 Nitrate μg
Nitrate/L

SRBC

Nitrate mg/kg as N 40 Nitrate μg
Nitrate/L

WQP

Nitrate mg/l 22413 Nitrate μg
Nitrate/L

WQP

Nitrate as
N

mg/l 3262 Nitrate μg
Nitrate/L

WQP

Nitrate mg/l as N 1105 Nitrate μg
Nitrate/L

WQP

Nitrate mg/l as
NO3

21 098 Nitrate μg
Nitrate/L

WQP

Nitrate ppb 6 Nitrate μg
Nitrate/L

WQP

Nitrate ppm 123 Nitrate μg
Nitrate/L

WQP

Nitrate μeq/L 24 Nitrate μg
Nitrate/L

WQP

Nitrate as
N

μeq/L 31 Nitrate μg
Nitrate/L

WQP

Environmental Science & Technology Viewpoint

DOI: 10.1021/acs.est.8b01035
Environ. Sci. Technol. 2018, 52, 3342−3343

3343

https://www.cuahsi.org/
https://www.cuahsi.org/
mailto:xzniu@psu.edu
http://orcid.org/0000-0002-1702-5381
http://dx.doi.org/10.1007/s10653-017-0031-6
http://dx.doi.org/10.1021/acs.est.8b01035

