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ABSTRACT: Chemical spills in streams can impact ecosystem or
human health. Typically, the public learns of spills from reports
from industry, media, or government rather than monitoring data.
For example, ∼1300 spills (76 ≥ 400 gallons or ∼1500 L) were
reported from 2007 to 2014 by the regulator for natural gas
wellpads in the Marcellus shale region of Pennsylvania (U.S.), a
region of extensive drilling and hydraulic fracturing. Only one such
incident of stream contamination in Pennsylvania has been
documented with water quality data in peer-reviewed literature.
This could indicate that spills (1) were small or contained on
wellpads, (2) were diluted, biodegraded, or obscured by other
contaminants, (3) were not detected because of sparse monitoring,
or (4) were not detected because of the difficulties of inspecting
data for complex stream networks. As a first step in addressing the last problem, we developed a geospatial-analysis tool, GeoNet,
that analyzes stream networks to detect statistically significant changes between background and potentially impacted sites. GeoNet
was used on data in the Water Quality Portal for the Pennsylvania Marcellus region. With the most stringent statistical tests, GeoNet
detected 0.2% to 2% of the known contamination incidents (Na ± Cl) in streams. With denser sensor networks, tools like GeoNet
could allow real-time detection of polluting events.

■ INTRODUCTION

Spills near streams can impact drinking waters or ecosystems.
The impact of a spill is affected by volume and location of the
wastewater discharged, the contaminants spilled, dilution rates,
and seasonal variations in precipitation. Spills related to
industrial activities distributed across the landscape are
particularly problematic. For example, spills related to the
extraction of shale gas have sometimes led to public concern
because hydraulic fracturing fluids and hydrocarbon-related
brines contain substances1−4 that can lead to health issues.
Spills enter streams through both surface runoff and

groundwater flow. Inorganic elements (e.g., sodium and
chloride) that are usually concentrated in spills from oil- and
gas-related wastes do not experience biodegradation. Previous
studies found that the impact of brine spills on the water
quality of nearby streams can last more than 6 months.4

Elevated levels of inorganic contaminants can be observed in
spill sites up to 4 years after the spill event.5 In particular, for
sodium (Na) and chloride (Cl) transported through ground-
water flow, soils can retain over 60% of the total amount of
spilled NaCl.6 Soils can slowly release NaCl over months,
sometimes even beyond one year.6,7

In Pennsylvania (PA), the most densely drilled state in the
largest shale gas play in the world, ∼12000 shale gas wells have

been drilled since 2004, often along ridges near streams with
high water quality. Spills and leaks are the most common
pathway8−14,33 that contaminants from the industry (other
than natural gas itself) enter streams in the Appalachian Basin
in PA and in other shale gas areas.15 In this paper, we explore
use of a new geospatial tool that assesses water quality in
stream networks to help detect the transport of contaminants
from a spill to a receiving stream.
When widespread energy development impacts a region

such as the Appalachian Basin, the public learns about spills
through media reports, self-reporting by industry, and media
announcements by the state regulator (in PA, the PA
Department of Environmental Protection (PA DEP)); there-
fore, the new tool is important. Only rarely do members of the
public observe spills happening in real time. If the public is to
be convinced that the activity is safe, the regulator must collect
and share enough monitoring data to assess impacts
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adequately. In some states, data are not published online or are
stored in formats that make it difficult to assess impacts.16 The
assessment of spills using stream chemistry monitoring data is
challenging for multiple reasons even when it is released to the
public. For example, ∼1300 spills (76 ≥ 400 gallons or ∼1500
L) were reported from 2007 to 2014 by the state regulator for
natural gas wellpads in the Marcellus shale region of
Pennsylvania (U.S.),16 a region of extensive drilling and
hydraulic fracturing, while stream chemistry data showing the
impact of a spill has only been published in peer-reviewed
literature for one incident. This incident was discovered
through tedious manual inspection of stream chemistry data
amidst the 70000 km of streams in PA.2 Very large oil- and gas-
related spills have been reported in the peer-reviewed literature
for other areas, e.g., the Williston Basin, North Dakota.4

Several reasons might explain why so few incidents have
been documented, leaving it impossible to determine the true
frequency of spill impacts. Incidents might be small enough
that they are quickly diluted (e.g., dissolved analytes including
sodium and chloride released in a small amount compared to
the water volume), or contaminants may not leave spill sites
(e.g., discharged material is confined to the well pad),2 or
contaminants may be quickly biodegraded (e.g., ethylene
glycol has a short residence time in the environment2). The
determination of the validity of such explanations, however,
requires that other issues related to monitoring be solved. Two
such monitoring issues that hinder spill detection are (i) the
sparsity of spatial and temporal coverage of monitoring
networks (largely because of the cost and time required to
monitor streams) and (ii) limitations in the approaches
available for inspecting the data for complex networks of
stream pathways.17,18 Thus, before researchers or the public
can conclude that most spills are too small or are too diluted or
sufficiently biodegraded to matter, issues related to monitoring
must be addressed. Large improvements in the first monitoring
problem may accompany the explosion in automatic sensor
devices.19 However, only a few investigators have pursued
automatic algorithms to deal with issues related to assessing
the chemistry of complex river networks. The development of
algorithms to inspect monitoring data and automatically detect
spills could allow regulators and the public to respond more
quickly and efficiently to problems.
If a tool for detecting spills with stream monitoring data

were to become automated, it would need to (i) access
streamwater chemistry data through an online portal such as
the Water Quality Portal or WQP (http://waterqualitydata.
us), (ii) calculate seasonal averages in stream chemistry for
different locations, (iii) compare upstream and downstream
site chemistries to seek evidence of anomalous changes in
specific locations, and (iv) complete tests on the locations to
determine if there is evidence for statistically significant
changes in stream chemistry above (i.e., upstream) and
below (i.e., downstream) sites of potential spill locations
during the relevant time periods. If such a tool was used over a
large region with a complex stream network, access to fast
computational capability and data storage would be required.
An additional attribute of such a tool might also be that it
could be used to guide the design of a more efficient
monitoring network.
Some aspects of such a tool have been explored. For

example, Munafo ̀ et al.20 proposed a geographic information
system-based water-monitoring tool. This tool relied on
domain knowledge (i.e., the knowledge of a specific discipline

in which a software or algorithm is applied) to assess the
impact of nonpoint sources. The tool avoided statistical
models because of the long computational times for large data
volumes. Geostatistical tools and semivariogram approaches
that quantify spatial patterns throughout stream networks are
limited to small scales due to sheer time complexity of the
underlying algorithms in most cases.21,22 Some data-driven
approaches have required extensive data preprocessing, e.g.,
data aggregation by month,23 thus ignoring the underlying
temporal patterns. Telci and Aral24 introduced a methodology
to associate contaminant observations to candidate spills as
part of network monitoring; however, this approach did not
allow choices for flow distance or temporal parameters for each
spill. The most successful approach would be one that would
allow testing of suspicious point sources without rerunning
time-consuming training procedures repetitively.
We previously reported a new algorithm for scalable river

network-based assessment that completes a multistep statistical
analysis over stream chemistry data and solves significant
statistical challenges in terms of stream network analysis.25

Sampling sites are clustered based on probability models over
weighted river network systems. Although the tool (i.e.,
GeoNet) cannot yet be used to discover unknown spill
incidents automatically, we show a first step in that direction
here by demonstrating its utility in detecting spills in PA that
have already been reported. Here, we develop GeoNet to
explore monitoring data from one online data portal to detect
environmental incidents related to shale gas. Future work
could expand the approach to make it fully automatic or could
develop ways to use the algorithm to design monitoring
networks. For pragmatic reasons (lack of access to enough
computational power), in this first exploration of the tool, we
restricted the study to sample-based monitoring rather than
sensor-based monitoring. Here, sample-based monitoring
refers to campaigns in which water samples are collected
manually and then analyzed in a laboratory for hydro-
geochemical parameters. Such campaigns are more time- and
resource-consuming than sensor-based monitoring approaches
that rely on automatic sensor devices deployed in streams. This
restricted the data volume that was interrogated by GeoNet. As
both sensor numbers and computational power improve, the
tool might become especially useful in the future for
monitoring networks with much larger volumes of real-time
sensor-based data.

■ METHODOLOGY AND DATA

GeoNet detects changes in stream chemistry in complex
stream networks using a new technique25 (see also SI). Source
codes are available at GitHub (https://github.com/amalag-19/
GeoNet_Methodology). An example of cloud-based inter-
active application for visualizations (https://github.com/
amalag-19/GeoNet_App) is also available.
GeoNet automatically compares changes in average water

quality upstream and downstream of a location to determine if
data document a potential polluting event that significantly
altered stream chemistry. Several factors can be set as free
parameters based on domain knowledge, e.g., the time lag
between spill and sampling and the distance between
monitored and spill sites. Three data layers are needed: (1)
stream network geometry, (2) water chemistry at monitoring
sites, and (3) locations for which the GeoNet user wants to
seek evidence about a possible spill.
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Here, we use GeoNet to look at all spill sites reported in the
largest shale gas play in the U.S., i.e., the Marcellus/Utica
between 2007 and 2014 in the state with the largest number of
Marcellus shale gas wells, PA. Spill locations from PA DEP26

were analyzed from a compilation.16,17 Our investigation
focused only on individual chemical analytes (i.e., chloride,
bromide, barium, magnesium, and sodium) rather than on
physical measurements such as turbidity or specific con-
ductivity.
Data. Stream Network. The shapefile of nth-order streams

(n > 0) published by PA DEP (http://www.pasda.psu.edu/
uci/DataSummary.aspx?dataset=16) was retrieved on April 22,
2017 and transformed to a directed network represented by a
two-column edge list of intersections (i.e., Base River Network
or BRN). For each edge, we extracted a sequence of spatial
coordinates describing the curved path of streamflow and
defined a list of sequences as the Stream Path List (SPL). If
applied to other states, GeoNet could use stream networks
from the National Hydrography Dataset High Resolution
available from the U.S. Geological Survey.
Stream Chemistry. PA stream chemistry data were

downloaded for 1904−2017 from the Water Quality Portal
(https://www.waterqualitydata.us/) on February 13, 2018 for
chloride (Cl), bromide (Br), barium (Ba), magnesium (Mg),
and sodium (Na). These analytes were selected because they
(1) are often monitored in streams, (2) are present in oil/gas-
field brines that are sometimes spilled in shale-gas plays,2 and
(3) are measured through sample-based rather than sensor-
based analyses (the large volumes of sensor data currently go
beyond our capacity for computational time). Data, mostly
collected by the U.S. Geological Survey or U.S. Environmental
Protection Agency, were cleaned and checked for parameter
name, evidence of filtration, unit, sampling date/time, and
location coordinates. For Cl, Br, Ba, Mg, and Na, respectively,
we found 4896, 1310, 1931, 4653, and 3872 unique sampling
locations and 73369, 20944, 26890, 83087, and 44061
measurements. Spatial distributions of these analytes as
illustrated by Figure S2 show that these five analytes, especially
Cl and Na, are widely distributed across PA. The curated data
set is available here (DOI: 10.26208/dbq0-k948).
Spill Incidents. Information for spills between 2007 and

2014 in PA were found for 1271 spill incidents (a few were
double-reported).16,17 Given that most were very small, we
mostly focused on the 76 major spills with reported volumes
≥400 gallons (∼1500 L).
Descriptions of GeoNet Framework. The comparison of

spill sites to monitoring sites as a function of time in monitored
river networks for all analytes is accomplished automatically by
GeoNet by integrating stream, monitoring site, and spill
location into one framework. The general workflow of GeoNet
is illustrated in Figure 1, which consists of three algorithms:
(1) a three-step mapping algorithm to integrate three data
sources mentioned above into a coherent network, (2) a
network transformation algorithm to simplify the river network
to improve model efficiency while maintaining the modeling
accuracy, and (3) a statistical inference algorithm synthesizing
results from multiple statistical tests to ensure the compre-
hensive evaluation of changes in stream chemistry to detect
contamination incidents. These three algorithms are discussed
in detail below. Additional notes for GeoNet framework can be
found in the Supporting Information.
Three-step Mapping Algorithm. Integrating these three

types of data into one coherent framework is challenging. For

example, since SPL is a discrete data representation of the
continuous path of streamflow determined from flowline data
and user-provided length for each segment, it inherently
involves an approximation. Locations of stream chemistry
samples therefore may not exactly coincide with these discrete
points along the path of each stream. The same problem
occurs when we attempt to match spill sites to coordinates in
SPL. In addition, if we use naive mapping approaches, big river
networks lead to long computational times. To resolve these
challenges, we use a three-step hierarchical mapping procedure.
We first map all monitoring sites for Contaminants or Polluters
(C or P) onto the intersections of a river network by
calculating geodesics with all nodes in the BRN. The main goal
is to localize the contaminant sampling location within a
neighborhood of closest possible streams by identifying major
nodes in a proximal region of interest and edges corresponding
to streams traversing through these nodes in BRN. Then we
extract the path information on this subset of streams from
SPL and calculate geodesics with each coordinate in this
sublist. This step reduces the total calculation time by more
than a factor of 10 for PA data sets, while maintaining the same
accuracy as the naive approach. Several discretization errors
could still arise from a discrete representation of a continuous
stream flowline. We resolve these discretization errors by
dropping a perpendicular from each C−P location to the
nearest point on the substream (see SI for more detail).

C-PP Network Construction Algorithm. To reduce
computational requirements, we transform the complex river
network to a localized network,27 i.e., a network of
Contaminant and Polluter locations together with their
Projected intersections (C-PP network; Figure 2). From the
C-PP network, Type I samples are then defined by the
algorithm as those located on upstream tributary branches that
directly connect to the stream channel where the spill
occurred. These sites are the best indicator of “background”
chemistry, i.e., prespill stream chemistry. Often, the number of
these upstream samples is small because of the low density of
monitoring sites. To improve the power of tests, we also
defined Type II samples as those upstream of the incident but
located on tributaries that do not directly discharge into the
stream section above the spill site. In the following discussion,
Type I and II samples are lumped together as “upstream
samples” and used to indicate prespill stream chemistry.

Figure 1. A flowchart illustrating the GeoNet Framework.
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Statistical Inference Algorithm. After constructing and
transforming the integrated network, we then subdivided the
water chemistry samples for each potential polluter site. These
are the sites we consider and test for statistically significant
changes in stream chemistry related to an event. We conduct
three statistical tests using the nonparametric Wilcoxon
method. The tests include (a) comparison of upstream
samples (Types I and II) before and after the event to
determine if there are temporal changes unrelated to the spill,
(b) comparison of downstream samples before and after the
event to determine if there are temporal downstream changes
potentially related to the spill, and (c) comparison of upstream
samples (both before and after) to downstream samples after
the event to look for potential evidence of the spills. We
consider three different versions of the test results as well as
combinations of these versions. In the most strict test for

detection (Version 1), pollution at a spill location is considered
to be detected only if (a) the upstream data indicate no
statistically significant difference before versus after, (b)
downstream data show a statistically significant increase from
before to after, and (c) a statistically significant increase from
upstream to downstream is observed within the designated
time lag set for the incident. The time lag, the time interval
over which the test looks for change, is set by the GeoNet user.
Throughout, “before” refers to any calendar date preceding the
date of the spill, and “after” refers to any date after the spill.
To modulate the trade-off between false discovery rates

(FDR) and the error rate of nonrejection of a false null
hypothesis, we also report two other test versions. Details of
these two less-strict versions (Versions 2 and 3) are discussed
in SI. Version 2 is based on the decision of tests b and c,
described above, after controlling for FDR using the
Benjamini-Hochberg (B−H) procedure28 while Version 3 is
based only on test c after controlling FDR using B−H.

Computational Requirements. We use GeoNet for
chloride data as an example to demonstrate the required
computational time. A total of ∼5000 chloride sampling
locations and ∼1271 spills yields a calculation of ∼7.5 billion
geodesics for PA data sets. For these chloride data in PA, it
takes about 50, 80, and 20 h for the three-step mapping, C-PP
network construction, and statistical inference algorithms,
respectively, after parallelizing codes over 20 cores on one
node of high-performance computing sever at Penn State
University. These estimates of running time exclude the
essential procedures of data cleaning and wrangling, which are
also time-consuming for most input data.29,30 The efficiency of
GeoNet could be improved further with respect to at least two
aspects: (1) codes could be parallelized further so that they can
make use of more cores on more than one node; (2) the
calculations of flow distance (during C-PP network con-

Figure 2. Illustration of a localized river network subset from the
entire network with contaminant (noted as “C”) and polluter (noted
as “P”) locations shown individually. Inset shows C-PP transformation
over a subnetwork that was based on directed river flow. For the
polluting spill P1, C1 is the only Type I upstream samples while, for
example, C7 and C4 are Type II background samples.

Figure 3. (A) Locations of Na samples for spill Tioga-2 (black dot) that occurred on July 1, 2013. No Type I upstream sample is available, while
Type II background samples (green dots) are present. Downstream samples are marked as red dots. (B) Estimated densities of Na concentrations
comparing upstream samples before and after the spill event in first test, with means and standard deviations before and after the event being (M =
5335, SD = 1617) and (M = 7301, SD = 2626), respectively. (C) Downstream samples before vs after the spill event in second test, with means and
standard deviations before and after the event being (M = 5179, SD = 1435) and (M = 7426, SD = 1272), respectively, together with comparing
downstream samples after the event and all upstream samples in the third test. (D) Temporal change of upstream and downstream Na
concentrations from 1958 to 1978. (E) Temporal change of upstream and downstream Na concentrations from 1997 to 2016.
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struction) could be accelerated by implementing dynamic
programming.31 For data sets larger than PA data sets, these
techniques could lead to a significant boost in model efficiency.

■ RESULTS AND DISCUSSION

Most detections by GeoNet were for Na, followed by Cl. Na
and Cl are also the two most concentrated species in one type
of spilled or leaked fluid (i.e., oil-field brines).
With GeoNet, we only considered background samples

within either 5 or 45 km from a spill site (for Type I and II
samples, respectively). The time lag that was adopted as the
GeoNet parameter was 6 months. In particular, “time lag”
refers to the period of time within which GeoNet will look for
changes in stream chemistry, i.e., the time between spill and
downstream detection. A lag of 6 months was chosen because
the impact of spills on the water quality of a nearby stream has
been observed sometimes to last on the order of 6 months as
measured in other hydrocarbon basins.4,5 For example, salts
retained by soils after a spill evaporates can slowly release
during a time period of more than one year.6,7 Month-long
timeframes may be particularly important for streamwater
quality impacted by groundwater flow related to spills into soil
or sediments along a stream.
The most statistically stringent tests (Version 1 with at least

one analyte) detected 4/76 (5%) of the spills in PA that spilled
≥400 gallons (∼1500 L). The spills detected by Version 1 (Na
or Cl) (named by county) are Tioga-1, Tioga-2, and Greene-1
(Figure 3). (One spill, Greene-1, was double reported.) Tioga-
1 and Greene-1 showed a statistically significant increase in
downstream Cl concentration following spillage compared to
upstream (Table S2, Figures S5−S7). PA DEP26 issued two
violations (Table S2), but no news releases were found for
those incidents. For the Tioga-2 spill, Na showed a statistically
significant increase downstream after the spill but not
upstream, as compared to before the spill (Figure 3). PA
DEP issued a violation but no news reports were discovered
online.
In addition to these Version 1 tests, 15 major spills (20%)

were detected by the less-stringent Version 2 tests (they were
also simultaneously detected by Version 3) and forty-two
(55%) by Version 3 tests alone. Results of Versions 1, 2, and 3
tests could differ because of both false positives and false
negatives. For multiple reasons discussed in the next sections,
we argue that most likely the discrepancies between Versions
are because of false positives. In addition, Version 3 tests are
expected to be characterized by the most false-positives.
False Negatives and False Positives. Table S10 shows

that only 23 of the total number (∼1300) of spill incidents
were detected with all three test Versions for Na. At first
glance, we might conclude that GeoNet largely failed because
it did not detect most of the 1300 spills, i.e., GeoNet yielded
many false negatives. This conclusion is misleading, however,
because many spills do not measurably impact the stream. For
example, for small incidents, contaminants often do not leave
wellpads or are immediately diluted below background.1,2 In
addition, contaminants might immediately be immobilized on
sediments for long periods of time before release. Finally,
contamination might have occurred but be obscured because
of other sources of contaminant: for example, NaCl
contamination in PA streams by shale gas activities could be
hidden when commonly used deicing salts wash into streams
from roads in the winter. We refer to all such incidents as

“impact-undetectable” because monitoring data or tools such
as GeoNet cannot detect such incidents.
A more nuanced definition of a false negative is a spill that is

“impact-detectable” but was not highlighted by GeoNet. Many
of the spills were large enough to be impact-detectable (Table
S10), but water chemistry data from appropriately located or
timed sampling results might not be available through the
portal. The only impact-detectable spill that we know about
and that has been described in peer-reviewed literature was the
2010 spill of NaCl-rich flowback water (spill volume
unknown) into Bobs Creek that led PA DEP to issue a notice
of violation. Brantley et al.2 documented this spill using a
database32 expanded beyond that of the Water Quality Portal.
This database included PA DEP analyses of waters sampled
soon after the event from directly up- and downstream of the
spill: very few data were reported and no statistical tests were
completed. This impact-detectable spill was a false negative
with respect to Version 1 tests by GeoNet because the number
of upstream samples before the spill was not sufficient to
complete a Version 1 test. However, GeoNet did detect it
using a Version 3 Cl test. Only a larger monitoring data set
with a higher sensor density would detect such a small spill.
Detection by GeoNet could also yield false positives, here

defined as spills that are “impact-undetectable”, but are
nonetheless detected. A priori, it is not clear if GeoNet yields
more false negatives or false positives without using domain
knowledge. For example, we can use domain knowledge to
explore if the frequency of GeoNet detection for an analyte is
higher for incidents with spill materials containing that
element. For example, the most likely source of Ba as a
contaminant, drilling waste, was spilled in 19.6% of the ∼1300
spills.17 In comparison, 24 of the 128 spills detected with
Version 3 Ba tests were identified as drilling waste (18.8%).
Here, we first excluded all sites with insufficient Ba samples to
perform the test. These fractions are statistically indistinguish-
able, suggesting that GeoNet Version 3 Ba tests are not
highlighting impact-detectable spills. Likewise, the fraction,
18.8%, of the major spills of highly saline water (flowback or
production) was statistically indistinguishable from the
fractions detected by Version 3 tests for Cl, Br, or Mg,
respectively: 20.4% of 392 spills, 16.9% of 362 spills, 17.8% of
146 spills. We conclude that the Version 3 Ba, Cl, Br, and Mg
tests are not reliable indicators of spills.
In contrast to Ba, Cl, Br, and Mg, 26.0% of 219 spills

detected by Version 3 Na were flowback or production waters,
statistically significantly larger than 18.8% (the fraction of
major spills with NaCl-rich flowback or production waters).
But of the 23 out of 1300 reported spills detected by all three
test Versions for Na using GeoNet, three are diesel spills
(Table S10). Diesel is a material that does not generally
contain appreciable Na. Thus, when GeoNet is used with only
one analyte for Na, the false discovery rate is at least 13% (i.e.,
3/23).

Tests of Multiple Versions and Multiple Analytes. The
lowering of the incidence of false positives requires an even
more conservative test such as detection of multiple analytes
with multiple test Versions simultaneously. For example, when
both Na and Cl are tested using all three test Versions, 7 spills
are positively detected by 5 of the 6 tests. An example from
these 7 detected spills is the Tioga-2 spill shown in Figure 3
(Table S10). Tioga-2 is detected by all three test Versions for
Na and for two tests for Cl: only the Version 1 Cl test did not
detect the spill (because of an insufficient number of upstream
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Cl samples). During the Tioga-2 incident, ∼2100 gallons
(∼8000 L) of NaCl-rich flowback water spilled “onto the
ground”26 and PA DEP26 mentioned that “Fluid migrated to
E&S control and beyond limit of disturbance”. Although PA
DEP did not report spillage reaching the stream, the minimum
distance between well pad and stream was only 400 m (Google
Earth). Given that the Tioga-2 spill occurred in the warm
summer when Na in a PA stream cannot be explained as
contamination by deicing salts, we conclude it is likely a true
impact-detectable spill that was detected by GeoNet.
Of these 7 GeoNet-detected spills using Na and Cl and

Version 1 + 2 + 3 tests, one appears to be a false positive given
the type of spill (the diesel spill in Tioga County on 8−9−
2012). This yields a false discovery rate of 14% (i.e., 1/7). We
thus also assessed an even higher level of stringency, namely,
requiring a detection for 6 of 6 tests (Versions 1 + 2 + 3 for Na
and Cl together): in this case, only 3 incidents are detected
(spills on 7/16/2013, 7/18/2013, and 7/22/2013 in Clearfield
County). None appear in the list of 76 major spills, but this is
because spill volumes (and composition) were not reported.
Given that they occurred in the same location within a week of
one another and we have no domain knowledge to attribute
them as false positives, these detections are considered
plausible examples of impact-detectable spills identified by
GeoNet.
Application of GeoNet for Monitoring Stream Water

Quality in Real Time. In the previous sections, we looked at
each spill site and asked the question, can we detect that spill
in the water quality data set? GeoNet would be most useful if it
could detect unreported contamination events as a real-time
monitoring tool for every location in a stream network. For
example, GeoNet would have to be continually assessing a map
of gridded locations spaced by the distance over which a spill
might be detectable. This is highly computationally intensive
because GeoNet must be used over and over again for each
possible location. To avoid excessive numbers of computa-
tionally intensive GeoNet runs, users could follow an
alternative workflow of using GeoNet in real-time monitoring,
i.e., running GeoNet at a higher frequency (e.g., daily) for a
few selected locations that have higher likelihoods of
contamination (e.g., sites downstream of clusters of oil and
gas wells), while running GeoNet less frequently (e.g., weekly)
for other locations. We explored the potential of GeoNet to
find potential spills by defining 331 locations spaced 3 km
apart in a grid (see SI for details) in Tioga County (Figure S8).
For every grid location, we studied the change in chloride
concentration in the nearby stream before and after March
22nd, 2010 (i.e., the date of the Tioga-1 spill) and compared
upstream and downstream (Figure S8). Two sites showed
positive detections of the Tioga-1 spill using all three test
Versions for Cl (Table S11) and two sites showed positive
detections by Version 2 and 3 Cl tests. This suggests that
GeoNet could indeed be applied to automatically detect
unreported contamination events, albeit with a computation-
ally intensive algorithm. Two other clusters of locations within
the grid similarly showed positive detections. The determi-
nation of whether these spills were real contaminations would
require intensive field work and denser sensor or sampling
arrays.
Implications. A new tool, GeoNet, was developed as a first

step to automate detection of contamination events in
networks for monitoring stream chemistry. Using test versions
that reduced the false discovery rate to <15%, GeoNet showed

that 20 of 1300 spills (2%) were detected with data in a
national database. We completed our test in one of the most
complex and large stream networks of any state in the U.S
(Pennsylvania). For the test with the highest stringency (where
domain knowledge could not contradict any detections), only
3 of 1300 spills (0.2%) were detected. The low detection rate
is not evidence that GeoNet failed; rather, it shows that most
spills did not measurably affect the streams. Given the large
volume of some NaCl-rich spills, the lack of measurable effect
is attributed to the sparsity of monitored sites. Further
development and deployment of sensors for stream chemistry
would allow for this problem to be addressed. As the volume of
sensor data grows, tools such as GeoNet could be improved to
allow real-time detection of spills or to guide the design of
more efficient monitoring networks.
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