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ABSTRACT 

Globally available environmental observations (EOs), specifically from satellites and 

coupled earth systems models, represent some of the largest datasets of the digital age. As the 

volume of global EOs continues to grow, so does the potential of this data to help earth 

scientists discover trends and patterns in earth systems at large spatial scales. To leverage 

global EOs for scientific insight, earth scientists need targeted and accessible exposure to 

skills in reproducible scientific computing and spatiotemporal data science, and to be 

empowered to apply their domain understanding to interpret data-driven models for 

knowledge discovery. The GRRIEn (Generalizable, Reproducible, Robust, and Interpreted 

Environmental) analysis framework was developed to prepare earth scientists with an 

introductory statistics background and limited/no understanding of programming and 

computational methods to use global EOs to successfully generalize insights from 

local/regional field measurements across unsampled times and locations. GRRIEn analysis is 

generalizable, meaning results from a sample are translated to landscape scales by combining 

direct environmental measurements with global EOs using supervised machine learning; 

robust, meaning that model shows good performance on data with scale-dependent feature 

and observation dependence; reproducible, based on a standard repository structure so that 

other scientists can quickly and easily replicate the analysis with a few computational tools; 

and interpreted, meaning that earth scientists apply domain expertise to ensure that model 

parameters reflect a physically plausible diagnosis of the environmental system. This tutorial 

presents standard steps for achieving GRRIEn analysis by combining conventions of rigor in 

traditional experimental design with the open-science movement. 

SIGNIFICANCE STATEMENT 

Earth science researchers in the digital age are often tasked with pioneering big data analysis, 

yet have limited formal training in statistics and computational methods such as databasing or 

computer programming. Earth science researchers often spend tremendous amounts of time 

learning core computational skills, and making core analytical mistakes, in the process of bridging 

this training gap, at risk to the reputability of observational geostatistical research. The GRRIEn 

analytical framework is a practical guide introducing community standards for each phase 

of the computational research pipeline: dataset engineering, model training, and model 

diagnostics, to promote rigorous, accessible use of global EOs in earth systems research. 
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1. Introduction

The past fifty years have ushered in exponential growth in the volume of earth

observations. As of writing, there are over 300 earth observing satellites in operation by 

national space agencies globally, with another 79 platforms approved or in development for 

the next decade (Committee on Earth Observing Satellites 2022). Increased availability of 

telecommunications bandwidth and lowered costs of electronic components have led to a 

proliferation of in-situ automatic earth monitoring networks (Stephens et al. 2020; Balsamo et 

al. 2018). Scaffolding the storage and processing of all this data, we’ve seen a more than a 

trillion fold increase in global computer power in the last 50 years (Tredinnick and Laybats 

2018). This shift in information content of environmental systems has led to a shift in 

research methods. To quote from the Stanford Earth Matter’s magazine: “The satellite and 

supercomputer are the rock, hammer, and compass of modern geoscientists.” Even though 

modern earth scientists are often tasked with pioneering big-data analysis, of the top-ten 

ranked undergraduate programs in earth science (US News and World Report 2022), the 

majority require one or fewer semesters of coursework in probability and statistics, and none 

have required coursework in computational methods such as databasing or computer 

programming.  

In the past several decades, the research community has proposed many guidelines to 

promote scientific rigor in observational computational research. One such framework that is 

widely accepted by the research community is Open Science by Design, as proposed by the 

National Academies of Sciences, Engineering, and Medicine (National Academies of 

Sciences, Engineering, and Medicine 2018). Open Science by Design guides stakeholders to 

practice “open science,” a movement to make scientific research reproducible and accessible, 

throughout the entire research life cycle (ideation, knowledge generation, validation, 

dissemination, preservation). The same concept was later adopted by the Earth Science 

community to form the ICON principles (Integrates, Coordinates, Openly, Networks) 

(Goldman et al. 2021) to promote open science approaches in Earth Science with a particular 

emphasis on the need for growing open interdisciplinary collaboration. Both concepts 

emphasize that it is important for researchers to make research results FAIR (Findability, 

Accessibility, Interoperability, Reusability; Wilkinson et al., 2016), which facilitates peer 

review of the entire computational research pipeline for improved research quality.  
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GRRIEn (Generalizable, Robust, Reproducible, and Interpreted Environmental, 

pronounced ‘grēn’ like the color) supervised learning using global earth observations (EOs) 

analysis builds on FAIR standards to empower earth scientists to generate high-quality, easily 

reproducible geostatistical workflows utilizing openly available global geospatial data. We do 

this by outlining best-management-practices for each step in the computational analysis 

pipeline: dataset engineering, model training, and model diagnostics (Fig. 1).  

Fig. 1. GRRIEn analysis introduces best-management practices to extract generalizable insight 

on environmental systems using supervised learning of global EOs, including standards for 

reproducible data engineering, robust model training, and domain-specialist interpreted model 

diagnostics. Figure adapted from (National Academies of Sciences, Engineering, and Medicine 

2018). 

GRRIEn analysis applies to context in which earth scientists use global EOs to generalize 

insights from limited earth system measurements to unsampled times and locations. We define 

major types of global EOs, classify the primary objectives when using global EOs in supervised 

learning, and briefly describe how global EOs can be replicably converted into analysis-ready 

data using geodatabase APIs (Application Programming Interfaces) and open-source 

programming languages (Section 2). We describe the two spatiotemporal data pitfalls, scale-

dependent observation and feature dependency, detail how they impact the robustness of 

supervised modelling frameworks for the different modelling objectives, and present checklists 

for diagnosis and model-agnostic management of these pitfalls in dataset engineering and 
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model training (Section 3, Supplementary Appendix C). Drawing from a suite of most-used 

tools in reproducible computational research, we propose a standard software repository 

structure to facilitate a highly adaptive, highly reproducible data sourcing, engineering, and 

modelling pipeline for replication of diverse supervised GRRIEn analysis workflows (Section 

4). Finally, we describe how experimental design principles translate into the era of global EOs, 

give an overview of explainable machine learning and AI, and explain the critical role of the 

modern earth scientists in interpreting the physical plausibility of trained data-driven models 

(Section 5). We conclude with how to incorporate GRRIEn into the experimental design and 

manuscript outline process and describe limitations of the method and future work (Section 6). 

Supplemental Appendix A, “Required (Computational) Tools,” is a detailed outline of the 

assumed background knowledge for GRRIEn analysis. For each topic, we include resources 

for where to find more information and learn new skills. We strongly suggest reading this 

supplemental resource, and reviewing any background concepts as necessary, prior to learning 

the GRRIEn method. 

2. Generalizable

Earth science disciplines have evolved in a historically data-poor environment. Early 

to mid-20th century geoscientists relied primarily on data from short-term site or laboratory 

based experiments (Clark and Gelfand 2006), and then used process models to infer modes of 

spatiotemporal variability across unsampled times and locations (Hilborn and Mangel 2013). 

A process model functions like an algorithmic narrative, merging theory and available data to 

quantitatively articulate and compare plausible hypotheses concerning drivers of 

spatiotemporal environmental variability (Hilborn and Mangel 2013). As one cannot properly 

quantify the importance of unparameterized, under-parameterized, or inaccurately 

parameterized phenomenon using process-based models, this method has strong potential for 

perpetuating confirmation bias in earth systems theories (Nickerson 1998; Bond et al. 2007; 

Shi et al. 2019). Global earth observations (global EOs), defined here as spatially continuous, 

temporally repeating data with continental to global coverage, are outcomes of an 

international movement to improve characterization of earth systems (Nativi et al. 2015). As 

global EOs are approximately spatiotemporally continuous, they provide an observation-
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based framework to translate insight from limited field measurements across unsampled 

times and locations to validate theories of spatiotemporal drivers of environmental processes. 

For example, characterizing spatiotemporal variability in precipitation using point data from 

rain gages is a highly socially relevant field of study that has been a major thread in 

hydrological study for decades (Kidd et al. 2017). In many gridded precipitation datasets, 

output from numerical weather models are used to spatially interpolate precipitation between 

gages (e.g. Hersbach et al. 2020). Recent studies show that satellite observations, while 

containing independent sources of error, can help elucidate the nature of specific biases in 

precipitation estimation from numerical weather models (Xu et al. 2022).  This is one of 

many examples of how global EOs have facilitated evolution of theories of environmental 

systems that are described in process models. The task ahead is straightforward: how can we 

accurately use these global EOs as proxies of environmental processes to augment our 

understanding of how and why diverse earth systems vary across space and time? 

a. Getting started with global earth observations.

The diversity and scope of earth observations are staggering and ever expanding

(Balsamo et al. 2018), but to get started, we recommend a working knowledge of the 

following three data types that provide global coverage at a regular spatial and temporal 

scale: active satellite remote sensing data, passive satellite remote sensing data, and coupled 

earth systems model (CESM) output (Fig. 2.) More detail on these data types can be found in 

Supplemental Appendix A Section 1. 
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Fig. 2. Three common sources of global gridded earth observations (EOs) include active 

satellite remote sensing data, such as synthetic aperture radar imagery (left), passive satellite 

remote sensing data, including optical and passive microwave imagery (center), and gridded 

outputs from global coupled earth system models (right). 

b. Objectives of using global EOs in environmental systems analysis.

In supervised learning, models are trained on coupled records of both input variables

(predictors), and output variable(s) [label(s) or predictand(s)]. The GRRIEn framework deals 

specifically with supervised learning. It is meant to be applied to contexts where some 

measurements of an environmental process (predictand) are available, but the experimental 

questions cover a larger spatial extent, a different period of time, and/or are at a different 

sampling frequency than the measured data. As global EOs are (approximately) 

spatiotemporally continuous observations, the overall objective of GRRIEn analysis is to 

train a supervised learning algorithm that can predict an environmental process using globally 

available EOs as input data. This algorithm can be used to generalize insights from direct 

observations of an environmental process sampled experimentally or in-situ (hereafter called 

the label or output variable in a trained algorithm) across unlabeled times or locations where 

global EOs are available (see examples in Table 1). The prediction space of the generalizing 

algorithm will be bounded by an area of interest (AOI) and period of interest (POI) that may 

or may not overlap with the labelled sample. Global EOs serving as predictors (i.e., input data 

to the predictive model) provide full coverage of the POI and AOI, whether or not it is 

possible to directly observe the environmental process at that scale (Fig. 3).  

Objective 1: Example: Example predictor: Example 

predictand/label: 

Modeling 

framework: 

Interpolation Mapping 

atmospheric 

NO2 

concentration 

(Young et al. 

2016) 

418 gridded geographic 

covariates and Aura 

Satellite Ozone Monitoring 

Instrument imagery 

U.S. EPA Air 

Quality System 

site NO2 time 

series 

Universal 

kriging 

Description: Interpolation is “filling in gaps” in the spatial/temporal record of an environmental 

process. Researchers use supervised models to gap-fill missing data in a time series, or statistically 

upsample or downsample the spatial density of observations to create a uniform grid of data across 

an AOI. With interpolation, our AOI and POI intersect with the sample space of direct observations. 
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Objective 2: Example: Example predictor: Example 

predictand/ 

label: 

Modeling 

framework: 

Extrapolation Predicting 

crop yields 

under future 

climate 

scenarios 

(Challinor et 

al. 2014) 

PRISM precipitation, vapor 

pressure deficit, and 

temperature (training). 

CMIP5 composite 

precipitation, vapor pressure 

deficit, and air temperature 

(prediction) 

County-level 

USDA Risk 

Management 

Agency yields 

Generalized 

Additive 

Model (GAM) 

Description: Extrapolation is the prediction of variability in the environmental process in yet-to-be 

explored spaces/times. Since our scope of interest in an environmental process often exceeds our 

ability to sample it directly in space and/or time, extrapolation is a common objective motivating the 

training of supervised models. 

Objective 3: Example: Example predictor: Example 

predictand/label: 

Modeling 

framework: 

Diagnosis Characterizing 

drivers of 

extreme 

precipitation 

(Carter et al. 

2021) 

NOAA-CPC Soil Moisture 

data, NCAR-NCEP 

Reanalysis data, EN4.2.1 

quality controlled subsurface 

ocean temperature and 

salinity objective analysis 

Gage-based 

precipitation data 

Guided 

regularized 

random forest 

regression with 

feature 

importance  

Description: In diagnostic modeling, we use the trained algorithm as its own kind of data to gain 

insight on the nature, causes, and associations of space/time variability in the environmental process 

Diagnostic modeling is often conducted to validate predictive or interpolative models, and we argue 

that domain specialists must play a fundamental role for it to be effective. 

Table 1. Examples of supervised learning for interpolation, extrapolation, and diagnostic 

modelling using globally available EOs as input. 
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Fig. 3. A) In supervised learning, a statistical model is trained that maps variability in input 

data to variability in a limited number of labels (in-situ or experimental measurements) which 

are contemporaneous in space and/or time. B) The trained model can then be used either for 

interpolation (filling in the gaps in spatiotemporal variability in the output for an AOI and 

POI that overlaps with the training data, top); extrapolation (predicting in an AOI and/or POI 

that exceeds the bounds of the training data, middle); and/or to diagnose drivers and modes of 

spatial coverability between inputs and labels (bottom). 

There are three primary objectives when using global EOs in supervised learning: 

interpolation (prediction in an AOI or POI intersecting with sample space), extrapolation 

(prediction in an AOI or POI that does not intersect with the labelled sample space), or 

diagnostic modelling (using the trained algorithm as data to gain insight on the nature, causes, 

and associations of space/time variability in the environmental process) (Fig. 3). Table 1 

provides detailed explanations and sample studies using global EOs as predictors in 

supervised analysis for interpolation, extrapolation, and diagnostic modelling. 

3. Robust

In experimental research, the goal is to collect a representative sample to allow for the

statistical evaluation of specific hypothesis(es) about independent drivers of variability in a 
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system. Experimental researchers start with a highly controlled environment, such as a 

laboratory or field space, which will hold all physical variables deemed important by domain 

scientists constant, except the variables that will be experimentally varied (the predictors). 

Good experimental design ensures that data will be collected across the full range of possible 

values for each predictor variable. In addition, in multivariate experiments, independent 

representation of predictors is ensured by collecting data across all potential combinations of 

values of predictor variables. For example, in an experiment to determine how radiation and 

soil moisture (the input variables or predictors) impact plant growth (the output variable or 

predictand), low radiation high soil moisture, low radiation low soil moisture, high radiation 

high soil moisture, and high radiation high soil moisture treatments should be included. The 

number of samples to be collected across treatments is defined a priori based on the desired 

confidence in results [e.g.(Campbell et al. 1969)].   

The field of statistics was developed to quantify certainty of results from controlled 

experimental trials, and machine learning and deep learning are subfields of statistics (Runge 

et al. 2019; Blei and Smyth 2017). Because of this, all observational environmental data, 

especially spatial and temporal observational data collected at large scales, have characteristic 

divergences from data collected in controlled experimental trials, some of which must be 

addressed in order for data science algorithms to generalize well. Here, we discuss three 

sources of such divergences: inability to parameterize all drivers of variability in an 

environmental system; limitations to ensuring independence of observations sampled in time 

and space; and limitations to sampling for independence of multivariate predictors.  

First, in observational experiments, we lack controlled environments. Many landscape 

phenomena will change at similar spatial and temporal scales as the environmental process of 

interest. If any feature driving variability in the environmental process is not parameterized 

(i.e., included as a predictor) in the model, that model is subject to omitted variable bias: 

something important is happening to the environmental process, and the impact is observable 

in our response variable, but it is not parameterized in the model.  

Second, in observational data science, we often lack the ability to collect balanced, cross-

replicated samples of multivariate predictors. This is because in environmental systems 

multivariate predictors tend to be intrinsically related to, or dependent, on each other. For 

example, since rain comes from cloudy skies, there will be more observations of low 
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radiation high soil moisture conditions, and few to no observations of high radiation high soil 

moisture conditions, in observational plant growth data (Carter et al. 2018b). This is called 

feature dependence, or a condition where we have some structure of covariability between 

individual predictors in our training data. 

Third, especially when relying on global EOs which are collected at standard temporal 

and spatial intervals, we do not get to define a-priori how many observations are collected 

per unit space or time to confirm or deny a pre-defined hypothesis. Since observations which 

are nearer to each other in space or in time tend to be related, our observations which are 

sampled at regular intervals in space and time will not be independent. Implicit observation 

dependence in spatiotemporal data means that our sampling frequency may either obscure or 

overrepresent the modes of spatiotemporal variability that we are trying to evaluate in our 

model.  

In large scale spatiotemporal systems, unaddressed scale-dependent feature and 

observation dependence can severely impact interpolation, extrapolation, and interpretation 

of supervised models. When working with global EOs, it is therefore important that we take 

certain steps to characterize feature and observation dependence in our datasets, and address 

it in dataset engineering and model training, to avoid misinterpretation of our results (Fig. 4) 

Please note that a checklist for robust spatiotemporal models can be viewed at the end of this 

section (Fig. 10), as well as a flowchart for diagnosing model performance issues using the 

spatial distribution of model residuals (Fig. 12). These figures are referenced throughout the 

section.  
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Fig. 4. The robust rules for GRRIEn analysis. 

a. Robust to dependent features.

There are two main sources of feature dependence in observational datasets. Intrinsic 

feature dependence occurs when measurements are imperfect representations of an 

underlying latent process that cannot be measured directly. For example, we cannot directly 

measure soil texture, but we can measure percent of sand, silt, and clay in a soil sample. All 

these variables will be intrinsically correlated (a higher ratio of sand implies a lower ratio of 

silt/clay), yet each give different information on the unmeasurable quality of soil texture. 

Incidental feature dependence is caused by our inability to capture a representative sample. 

With incidental correlation, not all combinations of predictor variables exist in a study area 

(e.g., the lack of cross replication between radiation and soil moisture mentioned in the 

introduction to Section 3).  

Multicollinearity is a special case of feature dependence that occurs when one or more 

predictor variables (features) are linearly related. To understand how multicollinearity 

impacts inference and prediction in machine learning algorithms, we should start by 

reviewing how multicollinearity impacts ordinary least squares (OLS) linear regression. In 

OLS regression, the standard error around coefficient estimates on collinear predictors are 

increased. The stronger the linear relationship between the variables, the larger the inflation 

of standard error on their coefficient estimates. This means that any single realization of a 

coefficient estimate, derived from a sample, is likely to be further from the unknown “true” 

value that represents the linear dependence between the predictor and predictand across the 

whole population. Multicollinearity therefore leads to model instability, or a situation where 

small changes in training data can lead to large changes in model coefficient estimates.  

Model instability is a problem for several reasons. To start, when two collinear predictor 

variables are included in a model, we cannot statistically identify which variable has a direct 

association or a causal impact with the predictand (Dormann et al. 2013). So given two 

predictors, one of which has a direct association with the predictand, and one of which has no 

direct physical association with the predictand but is incidentally correlated with the other 

predictor, no statistical model can determine which is the causal driver. This issue impacts all 

data-driven models, not just linear regression (Dormann et al. 2013; Alin 2010; Feng et al. 
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2019; Kim 2019). The performance of the model no longer depends on the value of 

individual independent predictor variables, but on the joint distribution of dependent 

predictor variables. If we enter into a prediction space where the two predictors are no longer 

incidentally correlated, the model may make inaccurate predictions, specifically if the model 

attributed substantial weight to the second, incidentally correlated predictor. In other words, 

with substantial feature dependency in input data, the model performance is contingent on the 

structure of multicollinearity that was present in the training dataset being conserved across 

the multivariate population as a whole. This means that even if a trained model shows good 

in-sample model fit statistics (i.e., our predictions are similar to our available data), if the 

model is being used to make predictions with a dataset where the correlation structure 

between predictors is different than it was during model training, such as we’d expect with 

incidental feature dependence, these predictions are likely to be inaccurate. This is ultimately 

because parameters in an unstable model are substantially less likely to represent physically 

plausible characterizations of the relationship between individual predictor variables and the 

predictand (Section 3.c. “Checking your work;” Fig. 12a).  

This can be problematic in environmental systems analysis, as the structure of collinearity 

between predictor variables is often dynamic in both space and time (Fig 5). For example, all 

meteorological variables will exhibit some degree of collinearity, and the strength and sign 

(positive or negative) of collinearity between meteorological variables will change over space 

(as a signature of local climate) as well as over time (as a signature of specific seasonal or 

weather patterns) (Dormann et al. 2013; Thornton et al. 1997; Carter et al. 2018a). Since we 

have limited ability to directly sample environmental processes across landscape scales where 

we might capture this variability in feature dependence, in observational environmental 

systems analysis, incidental multicollinearity in training data is a common problem that 

cannot always be avoided. In Fig 5a, this is demonstrated in the spatial variability in local 

correlation between summertime air temperature and monthly precipitation from 1950-2000 

across the United States. This covariance has a physical cause: as it gets drier, incident solar 

radiation that would have been used to evaporate soil moisture is partitioned to sensible heat 

flux, increasing air temperatures. The correlation coefficient changes spatially because the 

specific covariance structure of meteorological variables is a signature of local climate 

(Supplemental Appendix 2, Figure B1). Under climate change, we expect the exact structure 

of local covariability of meteorological variables to shift as well, as is demonstrated in Fig. 
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5b, which shows the local correlation coefficient between ensemble mean summertime and 

temperature and monthly precipitation projected for 2050-2099 under a moderate emissions 

scenario in the CMIP5 multi-model ensemble.  

Substantial changes in local correlation between summertime air temperature and 

precipitation under climate change also has a physical explanation, as we expect complex, 

non-linear changes in the dependency structure between meteorological fields as air 

temperatures increase. For example, local summertime air temperatures will be increasing 

because of increased long wave absorptivity of the atmosphere (a different physical driver 

than meteorological drought), and precipitation will shift due to shifting atmospheric 

circulation and hydrologic intensification. We cannot collect a sample of meteorological data 

that is representative of the structure of covariability under climate change because these 

conditions do not yet exist. As the specific correlation structure between meteorological 

variables changes over space and time, and since the prediction skill of data-driven 

algorithms depends on the conservation of the correlation structure of predictor variables in 

the prediction space, we are likely to see spatiotemporal structure in the error of observational 

algorithms trained with meteorological variables as predictors, specifically in extrapolation 

(Dormann et al. 2013; Carter et al. 2018a). Since the structure of collinearity changes over 

space and time in many environmental processes, even within the training data, 

multicollinearity must be carefully assessed during routine exploratory data analysis and 

cannot safely be ignored during model training (Dormann et al. 2013). Because of this, we 

often talk about two metrics of model performance in a multicollinear system: model 

accuracy (how well do predictions match labels) and model stability (how consistently  

variations in specific input variables map to changes in predictions between training samples 

and model parameterizations) (Graham 2003).  
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Fig. 5. Pearson’s correlation coefficient [scaled between -1 and 1, color bar (Benesty et al. 

2009)] between bias-corrected statistically downscaled Climate Model Intercomparison 

Project 5 ensemble mean monthly precipitation and daily max temperature. Historical 

observations 1950-1999 (left) and moderate emissions forecast (RCP 4.5) for 2050-2099 

(right) both indicate spatiotemporal variability collinearity between summertime maximum 

temperature and precipitation. Covariance of meteorological variables is a signature of local 

climate. As local climates shift due to global warming, so will the local covariability of 

meteorological variables (right). This generates complexity for predicting environmental 

process response to meteorological variables under climate change (Taylor et al. 2012). 

1) DIAGNOSING AND DATA ENGINEERING WITH FEATURE DEPENDENCE

(i) Quantify multicollinearity globally and locally

With multivariate spatial datasets, multicollinearity must be evaluated both globally 

(assuming all observations represent a single population) and locally (treating different 

regions and/or time periods as unique populations). Global multicollinearity can be visualized 

by looking at a scatterplot matrix (pairwise correlation coefficients), or quantified by way of 

the dataset's variance inflation factors (VIFs), condition numbers (CN) (Alin 2010), or 

variance decomposition proportions (VDs) (Brauner and Shacham 1998). Multicollinearity 

can also be diagnosed locally by calculating geographically weighted VIF, CN, or VD at 

different spatial bandwidths (Kalogirou 2013; Wheeler 2009; Lu et al. 2014). Researchers 

should note substantial variability in locally-calibrated metrics of multicollinearity and be 

transparent that these multicollinearities could affect model interpolation, prediction, as well 

as interpretation/explanation. 
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(ii) Select representative training/testing data 

To avoid overfitting when training algorithms, it is important to divide the entire pool of 

matched label/predictand observations into training data (data which the model parameters 

are calibrated to), and testing data (data which the model predictions are evaluated against). 

For iteratively trained algorithms or while hyperparameter tuning, validation data subsets are 

sampled from the training data to evaluate skill of evolving model formulations (Berrar 

2019). To avoid incidental multicollinearity, training/validation or/and testing data should 

contain a range of values between the minimum and maximum expected value for each input 

and output variable, with probability distribution of the sample reflecting the population as a 

whole. When there is spatial or temporal variability in the structure of multicollinearity in the 

dataset, training data should also be strategically sampled, and when appropriate 

training/validation/testing subsetting should be strategically designed to be representative of 

the range of covariability in input variables. This often means stratifying your sampling area 

to select diverse examples representing different regional or temporal representations of input 

variable collinearity (positive or negative, weak or strong) (Tamura et al. 2017). This way, we 

can quantify the models’ mean performance across the training or training/validation sample, 

as well as on anomalous examples that may be present in the population as a whole. 

In observational analysis, researchers often do not have control over training sample 

collection. When it isn’t feasible to collect representative training/validation data, testing 

data, which is data withheld from training and used to evaluate model stability, should always 

reflect anomalous (from global) spatiotemporal collinearity (Salazar et al. 2022). For 

example, the global Pearson’s correlation coefficient of two variables is 0.7 in a 1000 square 

km study area, but the local correlation with a bandwidth of 5km can range from -0.8 to 0.95. 

You would want to include regions with strong negative, neutral, and strong positive 

correlation in your testing data.  

When thinking about your intended extrapolation contexts, it is important to apply 

domain expertise to evaluate whether there might be shifts in spatiotemporal collinearity of 

your predictors that is not represented in your training data. Are you planning to make 

predictions in regions or times where other factors, like climate change, might change the 

relationship between your input variables? Shifts in the correlation structure of input 
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variables between your training data and your AOI or POI will likely impact the fidelity of 

extrapolations (Fig. 12b, (Dormann et al. 2013). 

(iii) Reduce the number of input variables

Unnecessary intrinsic multicollinearity, where several collinear predictors are included in 

the model with no known relationship to the predictand, can undermine model accuracy, 

stability, and interpretability, and should be avoided as a rule. In observational analysis, it is 

rare to have access to perfectly cross-replicated measurements of known or suspected drivers 

of variability in an environmental process. Instead, we have to compromise and use what 

observations we have available as “proxies” for the things we want to measure. When making 

use of proxy data, there’s a difference between making scientifically informed choices about 

which proxies are important, and just throwing all available data into your model and letting 

it decide for you (a process commonly known as “data mining”). At this point in the big data 

revolution, a well-trained domain scientist will do a better job picking important variables 

than a supercomputer. Step zero in addressing multicollinearity in your dataset is “feature 

engineering,” or using your domain expertise to select only the most physically important 

variables. The inclusion of any predictor variable in a data science model should be 

motivated by established theory and literature in your field. Think of each of your predictor 

variables as a hypothesis that you would like to test regarding what physical drivers or 

measurements are most relevant to your environmental system. If your meaningful predictors 

are intrinsically collinear, consider factor reduction [a review of methods can be found in 

(Chan et al. 2022)], or use elastic net regularization (see below). Stepwise selection, where 

variables are chosen by evaluating change in prediction error when variables are either 

included or omitted from the suite of predictors, is strongly discouraged in collinear datasets, 

as it is likely that model instability will lead to rejection of important variables (Smith 2018). 

2) TRAINING AND VALIDATING MODELS WITH FEATURE DEPENDENCE

(i) Train for model stability, as well as model fit

Prediction skill (and its opposite, error) can be decomposed into two components:

accuracy (variance) and precision (bias). The sum of variance and bias in predictions is the 

total error of the model (Fig. 6). The default objective of most model fitting protocols, like 

OLS regression, is to minimize total error in model predictions of an unbiased model. When 
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multicollinearity is present, models trained to minimize bias will tend towards being overfit. 

An overfit model has poor generalization, i.e., model parameters describe noise in the 

training data, not patterns in the population as a whole. Thus, overfit models yield inaccurate 

out-of-sample predictions (See Fig. 12a).  

Fig. 6. Total model skill (and its opposite, error) can be decomposed into accuracy (variance) 

and precision (bias). To avoid overfitting and minimize total error in models with 

multicollinear data, we intentionally add bias to our model parameters using regularization 

parameters. Figure adapted from Bigbossfarin, CC0, via Wikimedia Commons. 

Regularization parameters, like ridge (Hoerl and Kennard 1970), lasso (Tibshirani 1996), 

and elastic net [a linear combination of lasso and ridge parameters, (Zou and Hastie 2005)], 

are integrated into statistical (Dormann et al. 2013), machine learning (Li et al. 2021; Carter 

et al. 2021; Mudereri and Dube 2019), and deep learning models (Murugan and Durairaj 

2017; Versloot 2020) to shrink model estimators. Regularization is therefore a systematic 

bias that we add to models to stabilize parameter estimates and reduce overfitting. We do this 

because we know that the lowest total error of a model will occur somewhere between the 

lowest variance model and the lowest bias model (Fig. 6, right). A biased model might miss 

some of the patterns in the data, but since it will not fit noise, it often generates a more 

physically plausible representation of the system, and therefore yields more accurate 

interpolations and extrapolations (Dormann et al. 2013). The ridge and lasso regularization 

parameters contain coefficients which can be tuned. Increasing or decreasing the coefficient 

on your regularization parameters increases or decreases the amount of regularization, which 

increases and decreases the bias in your parameter estimates associated with collinearity, in 

order to increase model stability and minimize total error.  
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Different regularization techniques behave in different ways with multicollinearity. The 

ridge parameter achieves a “grouping effect:” if there is a group of highly collinear 

predictors, it will effectively partition the magnitude of response variance more equally 

between each collinear predictor variable, instead of arbitrarily all to one, improving model 

stability and reducing estimator bias. With a ridge penalty, unimportant coefficients will be 

reduced in magnitude, but no parameters will be shrunk to zero. As such, it is not directly 

suitable for feature selection. The lasso parameter, on the other hand, effectively eliminates 

uninfluential predictors by shrinking their associated coefficients to zero. Unlike ridge, 

however, it does not achieve the “grouping effect,” and therefore the magnitude of 

coefficients on collinear predictors is likely to be subject to volatility. Elastic net 

regularization, which is a linear combination of ridge and lasso, achieves “group selection 

effect,” producing physically plausible, stable coefficients that partition response variance 

within important groups of collinear predictors, while removing unimportant predictors from 

the model completely (achieving all in one factor reduction and model training). Elastic net 

shows consistent skill over other regularization and in-situ factor reduction methods in model 

fit and stability in high-dimensional, collinear datasets when added to loss functions of 

diverse machine learning and deep learning algorithms (Srisa-An 2021; Dormann et al. 

2013). Supplemental Appendix C provides an example of using regularization to manage 

multicollinearity. 

(ii) Utilize cross-validation and ensemble learning

Models which are trained on independent, randomly permuted subsets of

training/validation data in order to minimize out-of-sample prediction error produce more 

stable and robust models under multicollinearity. Among these, models which use ensemble 

learning to integrate insights from random subsampling [e.g. bagged decision trees (Breiman 

1996a), random forest (Breiman 2001), stacked models (Breiman 1996b), AdaBoost (Freund 

and Schapire 1999), Gradient Boosting Machines (Friedman 2001)]  perform better than 

those that use iterative learning (Wang et al. 2021; Hembram et al. 2021; Adnan et al. 2020; 

Smith et al. 2013). For example, random forest regression, a bootstrapped ensemble learning 

method, is consistently shown to have higher stability and prediction accuracy than other 

machine learning/deep learning algorithms, such as naive bayes, boosted regression trees 

(Hembram et al. 2021), support vector machines (Adnan et al. 2020) and artificial neural 
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networks (Smith et al. 2013) that train iteratively, when used on collinear observational 

datasets. 

(iii) Account for space-time variability in feature dependence

Models which calculate local (to space or time) parameters or weights are more stable and

robust with dynamic patterns of multicollinearity than models which rely on global parameter 

estimates (Mahadi et al. 2022; Carter et al. 2018b; Wen et al. 2018). Some examples of 

locally calibrated models include geographically weighted and time varying regression, in 

which both regression parameters and regularization parameters can be locally calibrated 

(Murakami et al. 2021; Li and Lam 2018; Wheeler 2009; Kalogirou 2013; Bárcena et al. 

2014; Mahadi et al. 2022); and convolutional neural networks, which are common in 

computer vision and can learn complex spatial as well as spectral patterns in 

multidimensionally gridded datasets (such as remotely sensed imagery or multivariate 

meteorological data) so long as these complex patterns are consistent throughout the AOI 

(Chen et al. 2014; Audebert et al. 2019). For example, CNNs have been shown to produce 

more accurate predictions than models which rely only on 1-dimensional (spectral) 

variability, such as generalized linear models, random forest regression, and artificial neural 

networks (Saha et al. 2022, 2021). For datasets where spatiotemporal collinearity is dynamic 

in time, CNNs which are locally calibrated, such as those which incorporate recurrent 

networks, show promising results (Guo et al. 2022; Zang et al. 2020; Chen et al. 2021).  

b. Robust to dependent observations

Environmental processes change in space and in time, often because of different drivers. 

For example, average annual temperatures across a continent will vary from place to place as 

a function of latitude, topography, and global circulation (spatial), while hourly temperatures 

for a given location will change as a function of seasonality, weather, and the diurnal cycle 

(temporal) (Fig. 7).  Since environmental processes change over space and time, and since 

space and time are both continuous fields, observations that are nearer to each other in space 

and time will be related (Anselin and Li 2020). Depending on what spatiotemporal driver you 

wish to characterize, your observations need to be sampled at some interval in space and/or 

time to capture important patterns, trends, and drivers of variability, without undersampling 

(sampling too far apart in space and/or time such that the information content of the signal is 

lost or changed) or oversampling (sampling too close together in space and/or time, which is 
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akin to repeating a measurement) (Section 3.b.1.i., Figure 8). In experimental analysis, 

defining the sampling interval (how much time will pass between when subsequent samples 

will be taken), sampling frequency (the inverse of sampling interval), and sample size (how 

many observations will be collected in total, the product of sampling interval and study 

duration) are important considerations for experimental design.  

Fig. 7. Schematic of the spatial and temporal scales (fprocess = 1/time or 1/length) of terrestrial 

water budget components modelled in hydrologic and hydrometeorological subroutines of 

coupled earth systems models. Adapted from (Cristiano and Veldhuis 2017) 

1) DIAGNOSING AND DATA ENGINEERING WITH OBSERVATION DEPENDENCE

(i) Define the process frequency

Most environmental systems will change over space and time due to different drivers, so

the process frequency (f-
process) of interest in an analysis will have a temporal component and 

a spatial component. The temporal process frequency is the minimum frequency (roughly the 

difference between high and low values, such as the maximum rainfall intensity and zero 

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-22-0065.1.Brought to you by SYRACUSE UNIVERSITY | Unauthenticated | Downloaded 03/07/23 02:07 PM UTC



22 

File generated with AMS Word template 2.0 

rainfall intensity during a storm) of temporal variability of concern to the analysis (e.g. daily 

f-
process= 1/day; or seasonal f-

process = 1/90 days).  Similarly, the process spatial frequency is the 

minimum linear distance of spatial variability of interest in the analysis. For example, if the 

goal of an analysis is to build a model that can interpolate convective precipitation between 

gage stations, using Fig. 7 as a guide, the spatial f-
process is approximately 1/100m, and the 

temporal fprocess is approximately 1/120 seconds. Defining the spatial and temporal f-
process is a 

critical part of observational experimental design, as variability in many environmental 

processes is associated with different physical forcings at different temporal/spatial scales. 

For example, a point-based precipitation time series integrates variability from mesoscale, 

synoptic scale, and planetary scale precipitation drivers, each representing a unique set of 

atmospheric forcings (Fig. 7).  

(ii) Define the sampling frequency

The sampling frequency (f-
sample) is the spatial and temporal resolution of your dataset. For 

example, the spatial f-
sample of a satellite image is the inverse of the pixel size, and the 

temporal f-
sample is the inverse of the time between subsequent image captures. The magnitude 

of f-
sample  relative to  f-

process has stark implications for your ability to accurately characterize 

an environmental process (de Knegt et al. 2010). Fig. 8 shows a theoretical continuous 

environmental process as a f(t). We explore three different potential fsamples as points (top 

row). We then attempt to recreate our process signal by linearly interpolating between these 

sample points (bottom row). Undersampling (Fig. 8, left) changes the information content the 

environmental process signal, a phenomenon commonly known as aliasing. Undersampling 

is associated with information loss, we cannot resolve drivers of environmental process 

variability that act below our sampling frequency. Undersampling cannot be resolved 

computationally, it is a sampling problem which motivates the design of higher-resolution 

satellites and finer scale coupled earth system model simulations (Luvall et al. 2017). We 

should consider any data that is sampled at a lower spatial or temporal frequency than the 

process frequency of interest to be aliased.  
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Fig. 8. (top) mismatched sampling frequency (𝑓𝑠𝑎𝑚𝑝𝑙𝑒, points) and process frequency (line) 

can induce aliasing (left, bottom) or autocorrelation (right, bottom) in recreated signals. The 

Nyquist frequency (𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 2 × 𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠, middle column) allows for recreation of a 

continuous signal from a discretized (sampled) signal with the fewest possible observations. 

Fig. 8 (middle column) shows a sampling frequency of exactly twice the signal frequency 

(𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 2 × 𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠), also known as the Nyquist frequency (Shannon 1949). The Nyquist 

frequency allows us to recreate a continuous signal from a discretized (sampled) signal with 

the fewest possible observations. Oversampling the signal (Fig. 8, right) retains the 

information content of the signal, but since we are now sampling too close together in time, 

our observations are no longer considered independent, which causes substantial problems in 

inference, prediction, and diagnostic modeling (Dubin 1998; F. Dormann et al. 2007).  

In observational environmental analysis, just as we cannot specify a-priori what we 

measure, we also typically cannot specify where and when the measurements are made. 

Global EOs discussed here are produced at standard spatial and temporal 𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠. For 

example, a reanalysis dataset that contains hourly data on a 1km grid, or a collection of 

satellite imagery with 7-day repeat coverage on a 10m grid. In observational experimental 

design, decisions must be made about which spatiotemporal gridded EO datasets are most 

appropriate as inputs for an analysis. Likewise, we often need to combine observations at 

different sampling frequencies. In these cases, we will statistically upsample/upscale (use 

interpolation to model the dataset at higher temporal or spatial resolution) or 

downsample/downscale (use statistical aggregation to model the dataset at lower temporal or 

spatial resolution) one or more observations to represent the data as concomitant in space 

and/or time. When dealing with multi-phase, multi-frequency observational signals, we 
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recommend use of the “engineer’s Nyquist” to estimate the ideal 𝑓𝑠𝑎𝑚𝑝𝑙𝑒, which is at least 2.5

times the process frequency (Srinivasan et al. 1998), eq 1): 

𝑓𝑠𝑎𝑚𝑝𝑙𝑒 > 2.5 × 𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠, (Eq 1) 

The engineer’s Nyquist provides some additional safeguard against aliasing environmental 

processes with heterogenous or non-stationary phase or frequency. 

For example,  using the above example analyzing convective precipitation with a spatial 

𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠 of 1/100m and a temporal  𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠 of 1/120 seconds (Fig. 7), we would to use 

precipitation data with a nominal spatial resolution less than 40m (𝑓𝑠𝑎𝑚𝑝𝑙𝑒 > 2.5 ×

1

100𝑚
 𝑜𝑟

1

40𝑚
) and a nominal temporal resolution less than 48 seconds (𝑓𝑠𝑎𝑚𝑝𝑙𝑒 > 2.5 ×

1

120𝑠
𝑜𝑟

1

48𝑠
). The spatial scale of convective precipitation systems is often below the spatial 

sampling frequency of precipitation gauges and weather satellites. Because of this, gridded 

precipitation datasets, even those with spatial resolution below the size of convective storms, 

tend to have negative bias in total precipitation estimates associated with the spatial aliasing 

of convective precipitation. In some places, like the Midwestern United States, the majority 

of total precipitation is delivered by localized convective storms, leading to substantial 

negative bias in gridded precipitation estimates (Risser et al. 2019). 

(iii) Do not use potentially aliased signals

In reality, a-priori definition of your spatial and temporal fprocess may not be a possibility.

First, when dealing with complex, dynamic, unknown, or multiple process frequencies, it is 

unlikely that any single, heterogeneous “engineers Nyquist” exists that will uniformly protect 

against aliasing and inducing autocorrelation across the entire AOI and POI [Figure 7, (Subba 

Rao and Terdik 2017)]. Second, because of historical limitations in environmental sampling, 

the spatiotemporal scales of variability for many environmental processes remain unknown. 

But even if you are unsure of your target fprocess, it is important to know the minimum fprocess 

that can be successfully evaluated from your data so that you do not incorrectly interpret 

aliased results. The minimum analyzable temporal fprocess for a dataset is minimum frequency 

with a signal to noise ratio above 0 decibles (dB) of your experimental data time series 

(Subba Rao and Terdik 2017). The minimum analyzable spatial fprocess of your spatial time 

series can be deduced by corresponding to the range of the spatial variogram of experimental 
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data (Garrigues et al. 2006; Lark 2002; Bogaert and Russo 1999). A dataset cannot be used to 

assess the importance of, or make predictions using proxies of, physical drivers acting below 

the minimum analyzable fprocess. 

(iv) Quantify autocorrelation

Spatiotemporal processes vary as a function of time (f(t)) and of two-dimensional 

space (f(x,y); where x and y may represent latitude and longitude). Autocorrelation describes 

a situation where a variable is correlated with itself at some distance, either in time or in 

space, called a lag. At a lag of zero, we expect a signal to be perfectly correlated with itself. 

As we increase the lag, we expect the absolute value of the correlation to decrease. Positive 

autocorrelation occurs when subsequent observations have similar values, and negative 

autocorrelation occurs when subsequent observations have opposing values (Fig. 9).  

Fig. 9. A. Time series showing positive (left) neutral (middle) and negative (right) 

autocorrelation. B. Spatial process showing positive autocorrelation or clustering (left), no 

autocorrelation (middle), and negative autocorrelation (dispersal, right). Adapted from (Fortin 

and Dale 2009). 

Autocorrelation can be a feature of the environmental process itself, or a feature of error 

in how the process has been observed or sampled. Examples of spatial processes that lead to 
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autocorrelation include spatial diffusion (a process that spreads over space and time from an 

origin), spillover (a process that spreads across real or perceived boundaries, such as air 

pollution crossing national boundaries or diseases jumping between species), spatial 

interaction (a process characterized by movement in conscious response to certain 

characteristics of the environment, such as animal migration), and dispersal (a process that 

seeks distance from itself, like would be observed in the population distribution of territorial 

mammals such as panthers). Examples of spatial error that lead to autocorrelation include 

oversampling (fprocess >> 𝑓𝑠𝑎𝑚𝑝𝑙𝑒), measurement error (for example, antenna patterns in a 

radar image, a stream sensor that experiences calibration drift over time), and model 

misspecification (for example, omitted variable bias or bias in a parameter estimate) (Dubin 

1998; F. Dormann et al. 2007; McMillen 2003). 

Like multicollinearity, autocorrelation in spatiotemporal data can cause substantial 

problems in statistical inference, and must be quantified both in time and in space prior to 

modelling. Most methods for evaluating autocorrelation will calculate some metric of 

covariance (such as linear or rank correlation, covariance, or semi-covariance) of a signal that 

has been offset from itself at increasing temporal or spatial distances, or lags. Our two 

primary goals in evaluating autocorrelation in exploratory analysis are to ascertain whether 

significant autocorrelation is present at a given 𝑓𝑠𝑎𝑚𝑝𝑙𝑒, and at what lag this autocorrelation 

becomes insignificant (referred to as the range of the data).  For the purpose of GRRIEn 

analysis, we recommend using Moran’s I statistic (Getis 2010) to calculate whether 

significant spatial autocorrelation is present globally in the data (Fig 11, Supplemental 

Appendix C), and the generation of spatial variograms (Garrigues et al. 2006; Oliver and 

Webster 1986) to estimate the range of this autocorrelation, or the distance at which 

autocorrelation becomes negligible (Fig 12, Supplemental Appendix C). For temporal 

autocorrelation, we recommend using an autocovariance function (ACF) to calculate the both 

the significance and range of temporal autocorrelation (Ma and Genton 2000; McLeod 1975). 

The diagnosis and management of autocorrelation in spatiotemporal data is the subject of 

extensive research, so these recommendations are necessarily simplistic. Excellent 

introductory information on management of autocorrelation in data can be found in the 

literature (F. Dormann et al. 2007; Dubin 1998; Ramezan et al. 2019). 

2) MODEL TRAINING AND VALIDATION WITH OBSERVATION DEPENDENCE
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To understand how autocorrelation impacts statistical inference, we’ll start with the 

example of oversampling. Sampling too close together in time and/or space (𝑓𝑠𝑎𝑚𝑝𝑙𝑒 ≫ 3 ×

𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠) is somewhat analogous to double counting ballots in an election. If we double count 

at random, it will inflate our sampling variance, and add instability to our results (Neville et 

al. 2004). If we double-count systematically, it will bias our results (Jensen and Neville 

2002). Whether we’re double counting at random or using some sort of structure, we’ll think 

we have more votes than we do, and will therefore have false confidence in our results 

(Ferraciolli et al. 2019). Like multicollinearity, autocorrelation is associated with model 

instability (Neville et al. 2004), but since it can artificially inflate confidence in predictor 

estimates (i.e. a negative bias in standard error of model parameters), it can make erroneous 

or biased estimators more difficult to identify during model validation (Fig. 12a, 

Supplemental Appendix C). 

Because aliasing represents information loss, it is important to err on the side of 

oversampling your data. Failure to diagnose and model autocorrelation, however, has been 

associated with inflated estimates of model skill, bias in parameter estimates, and bias in 

feature selection in statistical, machine learning, and deep learning models (Kattenborn et al. 

2022; Segurado et al. 2006; Sergeev et al. 2019; Brenning 2005; Ferraciolli et al. 2019), 

including convolutional neural networks (CNNs) (Kattenborn et al. 2022). Because of this, 

addressing autocorrelation is critical for models to generalize well in observational 

spatiotemporal systems. 

The methods for addressing autocorrelation in supervised learning fall into two major 

categories: strategically downsampling/downscaling the input data (e.g., resampling to the 

range of the spatial variogram) prior to model training, and modelling autocorrelation during 

model training. The two main approaches to modelling autocorrelation include spatial lag 

models, in which autocorrelation is parameterized directly in the model, or spatial error 

models, which force autocorrelation to the structure of model residuals. Some 

autocorrelation-tolerant modelling methods include auto covariate regression, autoregressive 

models, spatial eigenvector mapping, generalized least squares regression (Dormann et al. 

2007), and latent variable grouping (Neville and Jensen 2005; Carter et al. 2016). Spatial lag 

models are appropriate when modelling spatial processes, i.e., autocorrelation that is a 

generating feature of the spatial process serving as the predictand. Spatial error models are 
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appropriate when autocorrelation is suspected to be an artifact of sampling, measurement, or 

model specification error. If autocovariance associated spatial processes, measurement error 

(Fig. 12d) or dependence with spatiotemporal features (Fig. 12c) are inaccurately 

parameterized in the model, this will be apparent when looking at model residuals (Section 

3.c, "Checking your work;" Fig. 12).

Fig. 10. Checklist for robust data engineering and model development with dependent 

features (left) and observations (right) in spatiotemporal systems. 

c. Checking your work

In GRRIEn analysis, it is essential to example the residuals of your model (difference 

between predictions and observations of your predictand or error, Fig. 11) for spatial and 

temporal patterns. Spatial and temporal patterns in model residuals indicate that the model 

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-22-0065.1.Brought to you by SYRACUSE UNIVERSITY | Unauthenticated | Downloaded 03/07/23 02:07 PM UTC



29 

File generated with AMS Word template 2.0 

will not generalize well, and offer clues as to why it is not robust (Dubin 1998; F. Dormann et 

al. 2007). Spatial or temporal autocorrelation of model residuals can be indicative of model 

instability induced by parameter and observation dependence, or undiagnosed modes of 

intrinsic autocovariance in our environmental process. It can also indicate omitted variable 

bias: a condition where some important driver of spatiotemporal variability has not been 

parameterized in the model. Carefully examining the presence of spatial autocorrelation of 

model residuals (Moran’s I, Supplemental Appendix C, Fig. 11), the range of spatial 

autocorrelation of model residuals (spatial variogram), and the spatial distribution of model 

residuals (visual interpretation of spatial plots) can assist in diagnosing model 

misspecifications (Fig. 12). 

Fig. 11. Analysis of spatial autocorrelation of model residuals for A. Ordinary Least Squares 

linear regression and B. Autocovariate regression predicting 2012-2016 change in county-

level voting patterns in US Presidential elections (McGovern et al. 2020). Bootstrapped 

Moran’s I density plot (top left) and scatterplot (top right) generated by the splot package 

(Lumnitz et al. 2020) to visualize PySAL spatial analysis workflows (Rey and Anselin 2010). 

Figures in panel (A) show significant autocorrelation of model residuals, and figures in panel 

(B) show no significant autocorrelation of residuals. Including spatial autocorrelation as a

covariate significantly decorrelated model residuals, and is associated with an increase in the 

standard error on model coefficients [Supplemental Appendix C, code adapted from (Wolf 

2018)]. 

If spatial autocorrelation of residuals is present globally, as diagnosed by Moran’s I, this 

needs to be clearly stated as a caveat to the results in the discussion, as it strongly indicates 
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that estimates of model skill are inflated because of unparameterized autocorrelation in the 

data and increases the likelihood of biased estimators (Fig. 12a) or generalized model 

misspecification (Fig. 12d). When either global or local multicollinearity is present, it is also 

very important to plot the residuals of the trained model predictions over space and time. 

Spatiotemporal clustering in residuals is one sign that spatiotemporally variable 

multicollinearity has created model instability that has impacted the generalizability of your 

predictions. This is particularly true if your residuals cluster in regions that had locally 

divergent collinearity (e.g., if your residuals, or errors, are spatially clustered where local 

correlation coefficients, CN, VIF, or VD are of different sign or magnitude than the global 

correlation coefficient, CN, VIF, VD) (Fig. 12b). Model residuals which are spatially 

concomitant with other unparameterized geographic covariates are indicative of omitted 

variable bias, which can be difficult to measure directly (Fig. 12c).  

Fig. 12. Flowchart for interpretation of spatial autocorrelation of model residuals. 

4. Reproducible

The term “reproducibility” is usually defined as obtaining the same results when 

others use the same datasets and methods of the original study. As outlined in the literature 

(National Academies of Sciences, 2019), reproducibility in research is often referred to as 

computational reproducibility: can another scientist understand your method sufficiently to 
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replicate data processing, model building, and validation in their computational environment? 

The reproducible research community utilizes an ever-expanding collection of computational 

tools to facilitate easy sharing of code and data. We summarize the current best practices 

relating to geospatial analysis as standard elements of a GRRIEn repository (Fig. 13), which 

facilitates easy replication of data acquisition, engineering, model training, and model 

evaluation, all of which can be published on a platform like GitHub alongside peer-reviewed 

publication of your results. More information on the software and hardware tools required to 

create a GRRIEn repository can be found in Supplementary Appendix A ("Required 

(Computational) Tools”).  
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Fig. 13. Standard elements of a reproducible repository for end-to-and data engineering, 

modelling, and interpretation, utilizing global EOs from public geospatial data repositories as 

predictors. Inputs (I) and Outputs (O) of each code component are listed in README file, 

and are either contained in the GitHub repository or, in the case of large datasets, sourced 

from the internet. 

The GRRIEn repository contains standard elements used commonly in open 

geospatial research to ensure maximum portability and effortless reproducibility and 

adaptability of supervised learning workflows utilizing global earth observations on public 

geodatabases. A GRRIEn repository should contain the following: 

a. GRRIEn repository elements

 Raw data (folder): Contains your in-situ data, or labels, and standard delimiters of

your AOI and POI (such as a start and end date, bounding box coordinates, or a

shapefile) that can be used to collocate observations from global EOs.

 Analysis-ready data (folder): Contains the analysis-ready dataset merging your in-situ

data and global proxy variables; most often a data frame, matrix, or array.

 Model outputs (folder): Contains trained model objects that can be called to make

predictions, surrogate models used for model explanation (See Section 5: Interpreted),

as well as any data objects describing model fit and stability.

 Figures and tables (folder): Contains graphical and tabular representations of results,

including graphs, figures, maps, and tables in open-source file formats.

 Readme (html or Markdown file): A document providing detailed instructions on how

to use elements of the repository for end-to-end analysis, the hardware and software

required, the process for submitting merge requests, and license.

 Debian Linux-compatible software image (file): A container image is a static file that

includes executable code that will initiate an instance in the local compute

environment containing all version-controlled software, system libraries, and system

tools to execute all code in a repository.
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 Version history (.gitconfig file) a detailed record of all edits and contributions made 

by individual team members to the repository over the life of the project. 

 Code (folder): this contains all scripts used to interact with the other files and

elements in the repository.

b. GRRIEn code elements

The code contained in the GRRIEn repository should be sufficient to replicate a software

and dataset version controlled end-to-end analysis. The basic steps of working through the 

GRRIEn code can be seen in Fig. 13, and include programmatic workflows to set up required 

software in a local computing environment, searching and accessing raw data from quality-

controlled open data repositories, processing input data into the data structure required by the 

software algorithm, training and validating algorithms, explaining algorithms, and visualizing 

results. For portability (i.e., can be run on any computer) and traceability (i.e., each step of 

the research process is documented), the GRRIEn repository contains the code required to 

access data from the cloud, instead of storing data in the repository itself. As such, it builds 

on the movement to make all research data publicly available on quality-controlled databases 

with stable digital object identifiers (DOIs).  

 Setup.sh: bash script that initiates software image, installing all version-controlled

software, libraries, and packages required by repository scripts, and creates a

temporary data folder (temp data) in the user’s local environment. By providing

required software, the setup.sh script ensures the portability of the workflow. Reads

from “Debian-Linux compatible software image;” exports to User’s

computer/compute platform.

 Data source: utilizes online geodatabase API to programmatically access data for AOI

and POI given database catalog search parameters. The data sourcing code promotes

the use of published datasets in version-controlled repositories external to the GitHub

repository. Reads from: “raw data” folder, internet; exports to “temp data.”

 Process data code: collocates raw data (predictand) and downloaded global EO data

(predictor) in space and time, including coordinate reference system conversions,

resampling functions, and zonal statistics functions; converts collocated data into an
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analysis ready format (i.e. stacked raster, numpy array, pandas dataframe, R 

DataFrame); preprocesses analysis ready data for model training, including any 

feature reduction, variable transformations, and processing of missing data; calculates 

global and local multicollinearity; and global and local autocorrelation of all 

variables. Reads from “raw data” folder, “temp data” folder; exports to: “temp data” 

folder, “analysis data” folder. 

 Model train and validate code: splits data into training and testing datasets; trains

statistical model; derives statistics of model accuracy, stability, and summary

statistics; calculates Moran’s I, spatial variogram, and spatial plots of model residuals;

and produces model explanations. Reads from “analysis data” folder; exports to

“model data” folder.

 Figure and table generating code: code required to generate figures and tables. Reads

from “processed data” folder, “model data” folder; exports to “figures and tables”

folder.

Having these elements in your repository will enable end-to-end replication and 

portability of the research workflow, ensuring that other users can implement it without 

having to invest time compiling software, managing dependency chain issues, sourcing input 

data, or learning new computational techniques.   

5. Interpreted

When trying to build models that are generalizable at landscape scales, it is not 

enough to rely purely on traditional metrics of model fit. One of the most awe-inspiring 

things about life on planet earth is its propensity towards uniqueness. It is very difficult to 

collect representative samples of landscape scale phenomena (Meyer and Pebesma 2022). 

Even in interpolation, patterns of interdependence between both parameters and observations 

in large-scale space/time systems are frequently both complex and dynamic in scale 

(Dormann et al. 2013). Because of global change, both natural and anthropogenic, forecasting 

and hindcasting in time will implicitly introduce new patterns in the scale dependence of and 

dependence between environmental variables (Refsgaard et al. 2014). Plus, in observational 

analysis we can never capture every factor that drives variability in our environmental 

process, either by proxy or direct measurement, so omitted variable bias is functionally 

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-22-0065.1.Brought to you by SYRACUSE UNIVERSITY | Unauthenticated | Downloaded 03/07/23 02:07 PM UTC



35 

File generated with AMS Word template 2.0 

endemic. All this means that even after selecting the most important variables, training for 

model stability as well as model fit, ensuring that your data is not aliased, accounting for 

autocorrelation, and presenting your analytical pipeline in a format that can be vetted by your 

peers, your model may still produce erroneous interpolations and extrapolations in the wild.  

To this end, the most scientifically relevant data emerging from your GRRIEn 

analysis pipeline is the trained model itself. The most critical tool you need to successfully 

implement GRRIEn analysis is your domain expertise as an earth scientist. In environmental 

analysis, you cannot reasonably conclude that your model will make the right predictions in 

different contexts unless you make sure those predictions are happening for the right reason: 

do your model weights and parameters reflect a physically plausible diagnosis of the 

environmental system?  In other words, has your published model been interpreted within the 

context of your theoretical understanding of the system it purports to represent? It is the 

process of expert interpretation of the machine learning algorithm that leads to knowledge 

discovery in environmental data science. 

a. Interpreted modelling step 1: form an interpretable hypothesis

Prior to modeling, use your domain expertise to write a series of hypothesis statements 

for every predictor variable used in model training, using very specific verbiage reflecting 

data and relationship type. This hypothesis should be motivated by examples from the 

experimental literature in your field. Things to consider in your hypothesis statement: 

 What kind of data are you using?  Are your variables continuous or categorical? If

continuous, are the values bounded, and what are the data distributions? Has the data

been log-transformed, normalized, or standardized prior to analysis? If categorical,

are categories nominal or ordinal? Are there any categories that are arbitrary? Do you

have class imbalances, or any categories that are not representatively sampled in the

training data?

 What types of relationships do you expect to find? For continuous or ordinal data, is

the relationship between the predictand and individual predictor linear or nonlinear? If

nonlinear, is the relationship monotonic (predictand consistently either increases or

decreases as predictor increases) or non-monotonic (predictand increases with

increase in predictor for some range(s) of predictor value and decreases for other
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range(s) of predictor value)? If non-monotonic, is the relationship global (e.g., 

polynomial relationship) or local (e.g., changepoints or peak over threshold 

response)? In multivariate datasets, are there interactions between predictors (e.g., 

maize yield response to air temperature is positive when precipitation is high, 

negative when precipitation is low)? If interactions are suspected, are these 

interactions isotropic (monotonic across both variables) or anisotropic (nonmonotonic 

across either variable)? When evaluating interactions between continuous and 

categorical data, what moment(s) of the distribution of the continuous variable are 

likely to modify, or be modified by, the categorical variable (e.g., does storm type 

change the mean, variance, skew, or kurtosis of precipitation rate)? 

b. Interpreted modelling step 2: identify a model interpretation method.

Model explanation methods fall into two main categories: instance (local) explanation 

methods and model (global) explanation methods (Fig. 14). 

Fig. 14. The model explanation pipeline for black box and white box algorithms. For white 

box models, global explanations can be extracted from the model itself. For black box 

algorithms, global explanations must be inferred by way of a surrogate model, trained from 

both input data and predictions. Local explanations are derived from interpreting predictions 

across all possible values of predictors. Figure adapted from (Burkart and Huber 2021). 

Instance (local) explanation methods allow the user to understand how the predictand 

responds to the predictor by producing local (to values of predictor) predictions for specific 
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ranges of input values (e.g., like one example [or sample] from the training dataset). Local 

explanation methods are useful for exploring and qualitatively characterizing non-linear 

(including non-monotonic and non-isotropic) relationships between input and output 

variables. Local feature importance metrics are often interpreted both quantitatively (for 

example, comparing the magnitude of variance in predictand associated with individual 

predictor variables to determine relative importance of a variable among multivariate 

predictors) and visually (for example, a graph of predictions along the range of possible 

values of a predictor). Methods for instance explanation include: locally-interpretable model-

agnostic explanations (LIMEs), Shapely values, and local sensitivity analysis (Ryo et al. 

2021).  

Model (global) explanation methods quantify or summarize the importance of a 

predictor across all possible values of predictands. Generally, this is accomplished by 

providing an easy-to-understand function that can generalize how predictand will respond to 

all values of predictors. For the purpose of generating global explanations, we can divide 

supervised algorithms into two main classes: white box models and black box models (Fig. 

14). With white box models, which include linear models (multivariate regression, logistic 

regression), decision trees, rule-based models, interactive models, and Bayesian networks 

(Burkart and Huber 2021), global feature importance can be deciphered from the model 

object itself. For example, the sign and magnitude of regression coefficients yield insight on 

the nature and strength of the relationship between predictor and predictand.  Black box 

models, such as neural networks, map relationships between predictors and predictands 

through a series of weights applied to different transformations of data, and as such they 

produce model objects which are difficult for humans to quantitatively interpret. For black 

box models, we must generate surrogate models that approximate the trained model’s 

function, often using coefficients associated with linear or nonlinear (i.e., polynomial, 

interactive terms) representations of input variables, to arrive at a human-interpretable global 

explanation. Methods for surrogate model imputation include the sum of Shapely values 

(Lundberg et al. 2020; Aas, Jullum, and Løland 2021), decision paths (Van Assche and 

Blockeel 2007; Sagi and Rokach 2020), and counterfactual explanations (Verma, Dickerson, 

and Hines 2020).  
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Both local and global feature importance offer utility in helping scientists interpret 

black box machine learning algorithms for knowledge discovery. Local feature importance 

metrics can assist with providing a physical explanation for feature selection, comparing the 

relative importance of predictors, confirming predictand values associated with peak-over-

threshold responses, and confirming qualitative theories of variability in systems. Global 

model explanations are useful if your goal is to learn a complex, unknown function 

describing your environmental system (such as to parameterize a process model). They are 

strongly encouraged anytime you will be using your machine learning method to extrapolate 

beyond the spatial/temporal domain of your training dataset, or interpolate to a different 

spatial/temporal resolution that may be associated with unique physical drivers. 

c. Interpreted modelling step 3: use local and global explanation methods to confirm or

reject original hypotheses. 

In model interpretation, we use local and global feature importance metrics to 

evaluate our original hypothesis. Do local and global feature importance metrics confirm or 

reject your original data hypothesis, as it related to your data types and variable types? If not, 

does this represent a plausible new discovery of spatiotemporal variability in your system? If 

it does not, the model is not robust. 

6. Conclusion: using GRRIEn for experimental design.

Most students are trained to write a research manuscript containing five core sections:

introduction, methods, results, discussion, conclusion. This standard format has evolved 

alongside experimental science. Much like our GRRIEn repository structure (Section 4) 

ensures reproducibility of computational research, the format of a standard research 

manuscript is a well-worn, highly effective roadmap for reproducibility in experimental 

research. Each section corresponds to a stage of the analysis, and the guidelines for what 

must be included in these sections mirror details which must be attended to for a rigorous 

experimental analysis to occur. Fig. 15 translates this foundational manuscript structure for 

GRRIEn (Generalizable, Reproducible, Robust, and Interpreted Environmental) analysis. 

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-22-0065.1.Brought to you by SYRACUSE UNIVERSITY | Unauthenticated | Downloaded 03/07/23 02:07 PM UTC



39 

File generated with AMS Word template 2.0 

Fig. 15. Structuring the research manuscript for GRRIEn analysis. 

Introduction: theoretically motivates the analysis, presents research objectives 

(interpolation, extrapolation, or diagnostic modeling), and decomposes this objective into a 

set of physically-motivated hypotheses relating the predictand (environmental process 

observations) to predictors (globally-available earth observations). 

Methods: Introduces the predictand and predictors. Defines the area of interest and period 

of interest. Defines and theoretically motivates process and sampling frequencies. 

Demonstrates that training data reflects environmental process variability across the AOI and 

POI. Describes how predictand and predictors were co-associated into an analysis ready 

dataset, including any spatial/temporal resampling and coordinate reference system 

conversions. Describes how subsetting of testing and training data is representative of any 
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scale-dependent feature and observation dependence in the data. Motivates model selection, 

such as regularization, local calibration, or autocorrelation functions, using any feature and 

observation dependence in your data. 

Results: Presents results of interpolation or extrapolation, quantifies model fit and 

stability, decomposes model error into bias and variance, provides spatial analysis of model 

residuals, and presents local/global model interpretation. 

Discussion: Using original hypotheses as guides, contextualizes model interpretation in 

theoretical background discussed in introduction. Describes caveats in results of interpolation 

or extrapolation related to autocorrelation, multicollinearity, omitted variable bias, or 

nonsensical model diagnostics. Discusses limitations of current suite of global EOs in 

resolving research objectives that relate to sensor design, or data spatial or temporal 

resolution. 

Conclusion: Summarizes consistent findings and knowledge discovery related to the 

environmental process. 

Global earth observations provide an opportunity to analyze spatiotemporal variability in 

environmental systems at unprecedented levels of detail, but to unlock this information, earth 

scientists with must work with a suite of computational tools that are evolving alongside the 

data and require technical training. For earth science disciplines to maintain a legacy of rigor, 

access to these computational tools for research must not interfere with focused training in, or 

application of, skills in theoretical and applied sciences in a researcher’s area of expertise. 

The goal of GRRIEn analysis is to anchor the role of the earth scientists embarking in 

unchartered territories of computational research in the traditions of rigor, consistency, 

transparency, and theoretical history that have long formed the foundation for scientific 

understanding by simplifying expectations for open spatiotemporal data science. The 

GRRIEn framework is not meant to be complete or static. The computer hardware, software, 

data, and algorithms that are used in environmental data science are all evolving at breakneck 

speed. Instead, by outlining universal components of computational experimental pipelines in 

the earth sciences, including dataset engineering, model training, and model interpretation, 

the GRRIEn framework seeks to set a baseline for community standards that formally 

integrates the methods of the scientific process within computational research. Earth 

scientists embarking on research in the digital age may find themselves in uncharted territory. 
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The GRRIEn analysis framework is intended to serve as a packing list of critical 

computational tools and spatiotemporal statistics to enable traceable paths of true knowledge 

discovery on this journey. 
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