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ABSTRACT

Terrigenous clastic sediments cover a large area of the Earth’s surface and

provide valuable insights into the Earth’s evolution and environmental

change. Sediment grain-size decomposition has been widely used as an

effective approach to inferring changes in sediment sources, transport pro-

cesses and depositional environments. Several algorithms, such as single

sample unmixing, end-member modelling analysis and the universal decom-

position model, have been developed for grain-size decomposition. The per-

formance of these algorithms is highly dependent on parameter selections,

introducing subjective uncertainty. This uncertainty could undermine the

reliability of decomposition results, limit the application of grain-size

decomposition techniques and reduce comparability across different studies.

To mitigate the methodological uncertainty, a novel deep learning-based

framework for grain-size decomposition of terrigenous clastic sediments is

proposed. First, an improved universal decomposition model is used to ana-

lyse the collected grain-size data, in order to provide training sets for the

end-to-end decomposers. To meet the data size requirements of supervised

learning, generative adversarial networks are also trained for data augmenta-

tion. The performance of the new framework is then evaluated using a

small-scale dataset (73 393 samples from 18 sites) of three sedimentary types

(loess, fluvial and lake delta deposits). The decomposed grain-size results

demonstrate high feasibility and great potential of the framework in con-

structing a robust grain-size decomposition model. Finally, it is proposed

that future grain-size research should aim to establish guidelines for

grain-size data sharing and produce a big grain-size database for deep

learning.

Keywords Convolutional neural network, data augmentation, deep learn-
ing, generative adversarial network, grain-size decomposition.
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INTRODUCTION

Terrigenous clastic sediments cover a large area of
the Earth’s surface and are essential for under-
standing Earth’s evolution and exploiting petro-
leum and gas resources (Pettijohn, 1975;
Folk, 1980; Ruddiman, 2001; Galloway & Hob-
day, 2012; Reineck & Singh, 2012). Grain size is a
basic physical property of sediments that changes
during weathering, erosion, transport, deposition
and post-deposition processes (Pettijohn, 1975).
Hence, grain size is widely used to analyse these
processes and related control factors (Folk, 1966;
Visher, 1969; McLaren & Bowles, 1985; Vanden-
berghe, 2013; �Ujv�ari et al., 2016; D’Arcy et al.,
2017; Vandenberghe et al., 2018). Due to the fact
that grain size can easily be altered by hydrogeolo-
gical processes, grain-size distribution (GSD)
mainly reflects the depositional environment of
the most recent sedimentation process (Folk &
Ward, 1957; Visher, 1969; McLaren & Bowles,
1985). However, the relationship between grain
size and sedimentary environment is complex due
to the inherent complexity of terrigenous clastic
sedimentary systems (Folk & Ward, 1957; Visher,
1969; Reineck & Singh, 2012; Liang & Yang, 2023).
Interpreting the sedimentological significance of
GSD is still challenging (Liu et al., 2023). Decom-
posing GSDs has become a popular method for
extracting vital environmental and climatic infor-
mation from grain-size data (Weltje, 1997; Sun
et al., 2002; Dietze et al., 2012; Paterson &
Heslop, 2015; Liu et al., 2023). The fundamental
assumption of grain-size decomposition is that
measured multimodal GSDs result from the super-
position of multiple unimodal elementary distri-
butions (Folk & Ward, 1957; Visher, 1969; Sun
et al., 2002; Weltje & Prins, 2003). That is to say
that the mixing of sediments from multiple
sources or transported by various dynamic pro-
cesses which ultimately deposit simultaneously at
a location constitutes a forward process. Con-
versely, grain-size decomposition employs mathe-
matical and statistical methods to reconstruct
pre-mixed distributions and the mixing propor-
tions representing a reverse process. As expected,
the initial grain-size information is partially lost
following mixing, rendering grain-size decomposi-
tion a highly challenging task in its nature. How-
ever, compared with traditional grain-size
parameters (for example, mean, sorting coefficient,
skewness and kurtosis), grain-size decomposition
provides a more concise perspective for under-
standing the variations of GSDs (Weltje &
Prins, 2007; Liu et al., 2023). Moreover, it can

separate the effects of different sedimentary pro-
cesses on GSDs and provide new grain-size indica-
tors (Liu et al., 2023). These advantages make
grain-size decomposition a worthwhile problem
and a long-standing topic for grain-size research.
Several algorithms for grain-size decomposi-

tion have been developed, including single sam-
ple unmixing (SSU) (Sun et al., 2002; Qin
et al., 2005; Wu et al., 2020; Liu et al., 2021;
Peng et al., 2022), end-member modelling analy-
sis (EMMA) (Weltje, 1997; Heslop et al., 2007;
Dietze et al., 2012; Paterson & Heslop, 2015; Sei-
del & Hlawitschka, 2015; Yu et al., 2016; Zhang
et al., 2018, 2020; Dietze & Dietze, 2019; Liu
et al., 2021) and the universal decomposition
model (UDM) (Liu et al., 2023). SSU focuses on
individual samples and uses a curve-fitting
approach to determine the mixing proportions
and parameters of elementary distributions (Sun
et al., 2002; Qin et al., 2005). However, Weltje &
Prins (2003, 2007) noted that grain-size decom-
position is a poorly constrained problem that
leads to severe instability and ambiguity in SSU.
Therefore, those authors proposed EMMA
(end-member modelling analysis), which pro-
cesses all samples from a specific region simul-
taneously and leverages geological settings to
produce more stable and reasonable decomposi-
tion results (Weltje, 1997; Weltje & Prins, 2003,
2007). Subsequently, EMMA has gained signifi-
cant popularity and has given rise to many vari-
ant algorithms (Liu et al., 2023). However, in
recent years there has been an increase in dis-
cussions regarding the constraints and limita-
tions of the EMMA algorithm (van Hateren
et al., 2018; Varga et al., 2019; Liu et al., 2021,
2023; Dietze et al., 2022). For example, van
Hateren et al. (2018) noted substantial perfor-
mance differences among various EMMA algo-
rithms. Liu et al. (2021) and Dietze et al. (2022)
reassessed EMMA’s applicability and found that
it performs poorly when dealing with end mem-
bers with varying mode sizes. Moreover, Liu
et al. (2023) identified inherent flaws in EMMA,
arguing that end members are designed to ignore
potential component changes in reality, result-
ing in a suboptimal design. Those authors also
concluded that addressing this poorly con-
strained problem requires using as much a priori
knowledge as possible from sedimentological
understanding. Based on this idea, Liu
et al. (2023) proposed UDM, which employs a
more flexible mathematical model like SSU and
uses as much a priori knowledge as possible to
make the decomposition results more reasonable
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with respect to sedimentology (Liu et al., 2023).
UDM theoretically found the inherent identity
of SSU and EMMA methods, and thereby uni-
fied two schools of grain-size decomposition,
largely reducing the systematic uncertainty
caused by their principles.
However, this decomposition method devel-

oped along the lines of traditional methods still
has some subjective uncertainties due to individ-
ual user proficiency. Traditional methods require
users to judge their decomposition results and
select appropriate algorithm parameters. Previous
studies have also tried to use some statistical
methods and automated programs to select
parameters, but most of these cannot fully ensure
their effectiveness (Weltje & Prins, 2007; Dietze
et al., 2012; Paterson & Heslop, 2015; van Hateren
et al., 2018; Zhang et al., 2020; Liu et al., 2023).
Some studies even used seriously flawed algo-
rithm settings because they did not recognize the
unreliability of these parameter selection
methods. For example, the method currently
widely used to determine the optimal number of
components (end members) was found to be
unreliable (van Hateren et al., 2018; Liu et al.,
2023), but most of the current studies still use it
to select the number of components. The inappro-
priate number of components will not only affect
the accuracy of the decomposition results, but
also lead to serious bias when interpreting the
geological significance of the components and
related depositional processes. These subjective
uncertainties may greatly affect the credibility of
grain-size decomposition results and have
already caused a considerable negative impact on
the promotion of grain-size decomposition
methods. They also seriously damage the compa-
rability between different studies. Therefore,
solving this problem is very urgent.
Deep learning has seen tremendous progress in

the past decade and has produced notable results
in various disciplines (e.g. Silver et al., 2017;
Jumper et al., 2021). Deep learning techniques are
well-suited for automatically learning underlying
patterns in training data and provide a black-box
model that eliminates the need for users to under-
stand technical details (LeCun et al., 2015). This
approach allows us to construct a unified model
based on deep learning technology, thereby
completely removing the step of subjective algo-
rithm parameter selection, and thus greatly
reducing uncertainty caused by subjective selec-
tion differences. A novel deep learning-based
framework for grain-size decomposition is pro-
posed that utilizes various deep learning

technologies such as multilayer perceptron
(MLP), convolutional neural network (CNN) and
generative adversarial network (GAN). The frame-
work integrates traditional methods (for example,
UDM) to ensure the interpretability and reliabil-
ity of decomposition results. It uses deep learning
techniques to transfer inherent knowledge from
traditional methods, training data and expert
decision-making processes into a comprehensive
model. This eliminates the need for users to
understand the technical details of the model and
makes the model highly user-friendly. The pro-
posed framework provides a feasible solution for
dealing with methodological uncertainty in
grain-size decomposition. To verify its feasibility,
73 393 grain-size samples were collected from 18
sites across three types of sediment and this
decomposition framework was applied.

SAMPLING SITES AND GRAIN-SIZE
MEASUREMENT

Grain-size samples of three sediment types were
gathered from 18 sites, primarily located in
China and Central Asia (Table 1; Fig. 1). The
sampling sites included nine profiles and one
borehole from Chinese loess, four profiles from
arid Central Asian (ACA) loess, two boreholes
from fluvial deposits in Eastern Henan Basin,
China, and two boreholes from lake delta
deposits in Weihe Basin, China. The majority of
these sites are situated within the East Asian
monsoon region, predominantly influenced by
the East Asian winter and summer monsoons
(An et al., 2014). The climate at the ACA loess
sites is primarily governed by the westerlies (Li
et al., 2020). Previous studies have reported on
most of these sites (Ma et al., 2017; Guo et al.,
2021; Li et al., 2021, 2022, 2023; Liu et al.,
2021, 2023; Zhang et al., 2024), with the YB19
profile and WB1 borehole being introduced for
the first time in this study.
The YB19 profile (35.65°N, 103.15°E, 2145

metres above sea level – m a.s.l.), situated 3 km
east of the LX borehole (Guo et al., 2021), was
excavated to a depth of 44 m for grain-size sam-
ple collection. A total of 879 powder samples
were collected at intervals of 5 cm. The WB1
borehole (34.65°N, 109.58°E, 343 m a.s.l.) is part
of the Weihe Basin Drilling Project (An
et al., 2020) and is located in the same basin as
the HX borehole (Liu et al., 2023). A 1386.5 m
long core was drilled, and 27 392 grain-size
samples were obtained. Positioned at the Gushi
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depression, WB1 was characterized by finer
grain size and deeper water level. Its sedimen-
tary environments were dominated by shallow
lakes and delta fronts with developed subaque-
ous distributary channels.
The loess sites are the most numerous and

widely distributed. Although the numbers of
samples of these loess sites are relatively small,
loess has a simple depositional environment
and grain-size characteristics. Therefore, it is
easy to use loess data for training and verify the
model feasibility at a basic level. The other two
types of sediment have fewer sites and more
complex depositional environments. Especially,
the sediments in the Weihe Basin are affected
by wind, river and lake actions (Liu
et al., 2023). This increases the training diffi-
culty and challenges the model training with a
higher difficulty level.
A total of 73 393 sediment powder samples of

three sediment types from 18 locations were col-
lected for the grain-size measurements. After the
removal of organic matter and carbonate (Lu &
An, 1997), the GSDs were measured using a
Malvern Mastersizer 2000 laser diffraction
instrument (Malvern Panalytical, Malvern, UK)
at the Institute of Earth Environment, Chinese
Academy of Sciences. The instrument delivered
100 classes within a size range of 0.02 to
2000 lm.

DECOMPOSITION FRAMEWORK

Overview

The breakthrough of AlexNet (Krizhevsky
et al., 2012) in computer vision significantly
accelerated the development of deep learning.
As a result, supervised learning has matured
and found extensive applications in various
fields (LeCun et al., 2015; Silver et al., 2017;
Alom et al., 2018; Jumper et al., 2021; Epuna
et al., 2022; He et al., 2022; Wen et al., 2022;
Esmaeiloghli et al., 2023; Wang et al., 2023).
Therefore, it is logical to explore whether
grain-size decomposition can be reformulated as
a supervised learning problem. One challenge to
formulate grain-size decomposition as a super-
vised learning problem is the lack of training
samples, i.e. datasets with known decomposed
components and proportions. In contrast to
image classification problems, manually com-
pleting data labelling for grain-size decomposi-
tion, such as directly providing decomposed
components and proportions by observing the
GSDs, is not feasible. In other words, this is
the motivation of previous scholars to develop
traditional decomposition algorithms. The UDM
algorithm, which integrates SSU and EMMA,
and exhibits reliable performance (Liu
et al., 2023), can address this issue by providing

Table 1. The profiles and boreholes used in this study.

Sediment type
Profile/
Borehole Longitude Latitude

Sampling
depth (m)

Number of
samples

Stratigraphic
age References

Loess GJP 107.39 37.11 44.6 1366 ca 150 ka Ma et al. (2017)
BGY 107.29 36.66 27.3 2230 ca 150 ka Ma et al. (2017)
YC 109.94 36.62 20.0 399 ca 150 ka Ma et al. (2017)
LC 109.43 35.73 10.6 106 ca 150 ka Ma et al. (2017)
TC 108.96 34.97 12.9 258 ca 150 ka Ma et al. (2017)
BL 109.19 34.20 9.5 471 ca 150 ka Ma et al. (2017)
WN19 109.58 34.43 16.0 321 ca 150 ka Liu et al. (2021)
YB19 103.15 35.65 44.0 879 ca 150 ka This study
LX 103.12 35.63 203.8 4947 ca 650 ka Guo et al. (2021)
Osh 73.01 40.61 7.0 350 ca 30 ka Li et al. (2021)
FS18 115.40 40.20 15.0 750 ca 150 ka Li et al. (2022)
BSK 74.78 42.70 18.0 900 ca 150 ka Li et al. (2022)
CMG 69.83 38.39 25.0 1250 ca 150 ka Li et al. (2022)
NLK 83.25 43.76 20.5 1026 ca 70 ka Li et al. (2023)

Fluvial deposits HKG 113.89 34.64 303.5 2878 ca 3.2 Ma Zhang et al. (2024)
BS 113.89 34.72 320.2 3354 ca 3.5 Ma Zhang et al. (2024)

Lake delta
sediments

HX 108.71 34.13 512.2 24 516 \ Liu et al. (2023)
WB1 109.58 34.65 1386.5 27 392 \ This study
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decomposed data for further training. Moreover,
the UDM algorithm has been further improved
by incorporating the spatial distances of samples
in this study (please refer to the Supplementary
Information). By assigning a uniform set of ini-
tial parameters to each dataset, the UDM algo-
rithm can yield reliable decomposition results
with the requirement of a priori knowledge of
the dataset and site.
Supervised learning requires a large volume of

training samples to ensure adequate model gen-
eralization performance. However, in many
research domains, data acquisition is costly and

challenging. Therefore, data augmentation is
indispensable. A prevalent data augmentation
technique involves using GANs (Goodfellow
et al., 2014; Bergen et al., 2019; Al-Najjar &
Pradhan, 2021, Fig. 2). GAN, an unsupervised
learning approach, relies solely on sample
authenticity as labels. In principle, GANs can be
directly trained using measured GSDs. However,
due to potential multiple solutions in grain-size
decomposition, samples generated by GANs
trained in this manner may not align with sedi-
mentological knowledge. Hence, the decomposi-
tion results of UDM are used as a reference to

Fig. 1. (A) The locations of the profiles and boreholes used in this study; (B) focuses on the central region where
the sites are densely distributed. For more information on the sampling sites, please refer to Table 1 and Sampling
sites and grain-size measurement section.
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impose additional constraints on GAN training,
and to enable GANs to directly learn to generate
decomposed data.
Generative adversarial networks can be used

to generate supplementary data, enabling the
training of reliable deep learning-based decom-
posers which accept measured GSDs and pro-
vide decomposed components and proportions.
To accommodate the variations in the number
and specific conditions of components across
different sediment types, data from each sedi-
ment type is processed independently. A consis-
tent set of UDM algorithm settings is used for
the grain-size data of each sediment type, and a
corresponding set of GANs is trained using the
UDM results. Subsequently, the decomposers
are trained for each sediment type using data
derived from both UDM and GANs. A classifier,
essentially a sedimentary facies discriminator

based on grain-size data, is also trained to auto-
matically assign measured GSDs to the appropri-
ate decomposers. Finally, a detailed evaluation
of the trained generators, decomposers and clas-
sifier was conducted to confirm the feasibility of
this decomposition framework.

Preparation of datasets

The measured GSDs were classified into three
categories based on sediment types, and the
UDM algorithm was applied with varying
parameters for initial decomposition. The pri-
mary differentiation in these parameters lies in
the number and initial parameters of the compo-
nents. For loess, fluvial and lake delta sedi-
ments, this study employed 3, 4 and 5
components respectively, following the Weibull
distribution for decomposition. The initial

GSDs

Classifier Decomposers

UDM Reference
data

GAN

Synthetic
data

Decomposition
results

Generate

Train and
classify Train

Distribute Decompose

Sampling and
measurement

A

B

Generator Discriminator

z

Noise

x'

x

Real samples

or

Synthetic samples

Real or
fake 

Update

Update

Sediments of different
environments Generators

Classifier Decomposers Decomposition
results

Synthetic
data

Reference
data

Fig. 2. (A) Deep learning-based
decomposition framework proposed
in this study and (B) the basic
architecture of generative
adversarial networks (GANs)
(Goodfellow et al., 2014) used in
this study. For more details, please
refer to the main text and the
Supplementary Information.
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parameters for each component were ascertained
by applying the SSU algorithm to decompose
selected representative samples. Please refer to
the Supplementary Information for more details
on the algorithm settings and decomposition
results.
Given the abundance of available loess pro-

files, only eight loess datasets from the Chinese
Loess Plateau (CLP) were used as the training
sets for both generators and decomposers, while
datasets from other loess sites were used as test
sets to evaluate the generalization performances
of decomposers. In the test sets, the LX borehole
has a total length of approximately 203.8 m and
an age of about 650 ka. It can be used to test
whether the model trained using loess from the
last interglacial can be used to decompose older
loess samples. FS18 and four loess samples from
ACA, whose grain-size characteristics differ
from those of CLP’s loess (Li et al., 2021, 2022,
2023), can be used to test the generalization abil-
ity further. For other sediment types, all samples
were included in the training of generators and
decomposers. Considering that classifier training
is relatively straightforward, only measured
GSDs were used for training, without using data
generated by GANs.

Generative adversarial networks for data
augmentation

Generative adversarial networks (GAN), inspired
by game theory, simultaneously train a generator
and a discriminator (Goodfellow et al., 2014).
The generator’s role is to create realistic sam-
ples, while the discriminator evaluates whether
these samples are genuine or fabricated. The
training process involves a competition between
the generator and the discriminator until the
generator can produce data so realistic that
the discriminator cannot differentiate it from
real samples. Since their inception, GANs have
garnered significant attention, propelling
advancements in generative model research and
applications (Goodfellow et al., 2020). One cru-
cial application of GANs is data augmentation,
where the generator learns the distribution of
real samples and generates new ones via random
sampling (Al-Najjar & Pradhan, 2021). Training
original GANs presents challenges, leading to
the proposal of several improved models, such
as the Wasserstein GAN (WGAN) (Arjovsky
et al., 2017). WGAN amends the loss function to
tackle instability issues during training, but its

gradient clipping strategy is rudimentary
(Arjovsky et al., 2017; Gulrajani et al., 2017;
Miyato et al., 2018). Subsequent research has
proposed enhancements like gradient penalty
(Gulrajani et al., 2017) and spectral normaliza-
tion (SNGAN) (Miyato et al., 2018) to mitigate
this limitation. Furthermore, GANs provide flex-
ibility in designing network structures for both
the generator and discriminator, facilitating the
integration of various network modules from
other studies, such as convolutional layers
(Lecun et al., 1998; Dhillon & Verma, 2020).
For grain-size decomposition, the generator

accepts multidimensional noise following a
Gaussian distribution as input, and outputs
components and proportions. The generated
mixed GSDs can be obtained through further cal-
culation. The generated components, propor-
tions and GSDs are then input into the
discriminator for judgement. At the same time,
an equal number of UDM decomposed compo-
nents, proportions and measured GSDs are also
input into the discriminator for judgement. This
study explores the applicability of convolutional
layers for data augmentation in GSDs by propos-
ing two network architectures for the generator
and discriminator. One architecture is based on
the MLP (Fig. 3A and B), while the other
employs the CNN (Fig. 3C and D; Lecun
et al., 1998). Different branch structures are
designed for different types of data to perform
generation and discrimination. Regardless of the
branch type, the overall structure is similar,
composed of four or five layers of linear or con-
volutional layers. Because there are no residual
connections, blindly increasing the number of
network layers does not necessarily improve the
performance of the model (He et al., 2016).
The performance of the network structure using
these numbers of layers is relatively good
according to actual testing results. To address
training instability in GANs, it is explored
whether WGAN and SNGAN can enhance per-
formance; thus, each network type is trained
using GAN, WGAN and SNGAN methods sepa-
rately. Six sets of generators and discriminators
are trained for each sediment type using identi-
cal hyperparameters such as the learning rate
across all training sessions in this study. A com-
parative analysis is conducted to ascertain the
optimal network structure and training method.
Please refer to the Supplementary Information
for more details on the model design and
validation.
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Conv1d (128, 256)

LeakyReLU & MaxPool1d
flatten

Conv1d (q, 64)

LeakyReLU & MaxPool1d
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Conv1d (128, 256)
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Linear (64, 128)

Noise

LeakyReLU

Linear (z + q, 64)
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Fig. 3. The network structures of the generators and discriminators based on multilayer perceptron (MLP) and
convolutional neural network (CNN). Please refer to the Supplementary Information and the published codes for
more details.
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Decomposers and classifier

In the presented framework, a decomposer refers
to the model trained to decompose the measured
GSDs and generate multiple elementary distribu-
tions (i.e. components) along with their respec-
tive proportions. By observing its input and
output, it is very similar to the generator in
GANs. Therefore, a basic decomposer can be
built by making minor modifications to the
input layer of the generator to match the dimen-
sions of GSDs. Considering that convolutional
layers significantly improve the performance of
GAN generators, only the structures adopting
convolutional layers are used as a basis for con-
structing the decomposers here. This method is
consistent with the GAN design where each sed-
iment type requires a unique decomposer. Since
it is necessary to train a specific model for each
sediment type, distributing data among these
models is necessary. Therefore, a suitable classi-
fier is needed for this task. The classifier’s input
consists of the GSDs to be decomposed, and its
output provides the label corresponding to the
sediment type. Similarly, this classifier is akin
to the sub-module used in GANs for evaluating
GSDs. Therefore, with minor modifications to its
output layer, a basic classifier can be developed.

Model validation

Assessing the quality of the generators in GANs
is challenging, especially for the grain-size
decomposition problem. Existing evaluation
metrics designed for image generation tasks are
not directly applicable. Thus, it is crucial to
develop quantitative metrics for evaluating the
generator’s performance. This study introduces
two novel metrics to assess the quality of GAN
generators for the generative task of GSDs. The
first metric, termed ‘component precision’, is
designed to ascertain how effectively the genera-
tor has learned to generate a grain-size compo-
nent that conforms to a specific distribution (for
example, the Weibull distribution in this study).
This involves understanding of the hidden rela-
tionships between the frequencies of different
grain-size classes, i.e. the knowledge about the
structure of grain-size components. The knowl-
edge is not hard-coded into the generator’s
model, it is straightforward to verify whether
the model has learned this knowledge by fitting
the generator’s output to a specific distribution
(for example, the Weibull distribution in
this study). The fitting residuals can then

quantitatively assess whether the generator has
learned this knowledge. In this study, the nega-
tive logarithmic mean square error (LMSE) is
used as a measure of component precision. The
second metric evaluates whether the generator
has effectively learned the data distributions of
grain-size components from the UDM results
of real samples. For this purpose, this metric is
based on the Wasserstein distance, which
is widely used to measure the difference
between two distributions (Vaserstein, 1969;
Arjovsky et al., 2017; Gulrajani et al., 2017).
Since Wasserstein distance cannot be directly
applied to vector-type data, a slight modification
is needed. This study separately computes Was-
serstein distances for both the mean grain size
and the sorting coefficient of bulk samples and
grain-size components. Then, the average of
these different Wasserstein distances is used to
represent the overall Wasserstein distance. In
addition, several visualization charts shown in
the Supplementary Information can further
examine the details of the generated data.
To evaluate the performance of trained decom-

posers, this study, following the convention in
grain-size decomposition research, uses the
residual of the decomposition results as a funda-
mental metric (Weltje, 1997; Sun et al., 2002;
Qin et al., 2005; Dietze et al., 2012; Paterson &
Heslop, 2015). While lower residuals may not
necessarily indicate superior performance for an
individual sample, they can reflect the overall
accuracy of the model’s decomposition results
for a dataset as a whole to some extent. To
examine how dataset size influences decom-
poser performance and validate the necessity of
data augmentation, this study designed a set
of control experiments. These experiments con-
sist of 16 sub-experiments with identical model
structures and training hyperparameters for the
decomposers but varying sample quantities in
their training sets. The first four sub-
experiments use training data derived from
UDM’s decomposition results with increasing
sample quantities: 512, 1024, 2048 and 4096
respectively. From Experiment 5 to 10, gener-
ated samples from one of the GAN generators
(CONV SNGAN) are introduced into these
experiments with quantities being 12 288,
24 576, 49 152, 98 304, 196 608 and, finally,
393 216, respectively. From Experiments 11 to
16, compared with Experiments 5 to 10, the gen-
erated samples are produced by all six different
GAN generators, while the number of samples
remains consistent. This design is intended to
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determine whether the incorporation effect of
different generators is beneficial to the training
of the decomposer by enhancing the diversity of
generated samples. In addition, a detailed com-
parison has been taken on the decomposition
results of UDM and the decomposers for all
sites.
Furthermore, it is essential to evaluate the per-

formance of the classifier using established eval-
uation methods. Despite the limited importance
of the classifier in this study, approximately
20% of samples are allocated as the test set and
basic evaluation techniques that involve
computing precision, recall, F1 score for various
sediment types and overall accuracy are
employed.

RESULTS

Decomposition results of the universal
decomposition model

Figure 4 presents the decomposition results of
UDM for several selected sites (please refer to
Figs S1 to S3 for additional sites). The decom-
posed components of the loess datasets gener-
ally exhibit similar shapes, with the BSK profile
being an exception (Fig. S2M). The decomposi-
tion results for the BSK profile reveal a distinc-
tive feature: a high kurtosis and a notably low
proportion for its component C3 (Fig. S2N and
O). Upon conducting an exhaustive comparison
on the data distribution of loess sites in the CLP
and ACA regions, a notable difference is
observed (Fig. 8). This disparity suggests that
the formation mechanisms or control factors
across these two regions may be different.
Moreover, there is spatial diversity that aligns

with the aeolian deposition regime of the loess
on the CLP (Liu, 1985; An et al., 2014). Specifi-
cally, for sites proximal to the dust origins (for
example, GJP), the component proportions dis-
play pronounced glacial–interglacial fluctua-
tions; however, for distal sites (for example,
WN19), these fluctuations are less evident. This
observation suggests that the loess formation
model for south-eastern loess sites deviates
slightly from the classic model (Liu, 1985;
Pye, 1995; An et al., 2014). While the classic
loess formation model is dominated by the East
Asian winter monsoon, sites closer to the south-
eastern CLP appear to be significantly influenced
by the East Asian summer monsoon (An
et al., 2014; Hou et al., 2021).

In the comparative analysis of the decomposi-
tion results from two fluvial boreholes, a signifi-
cant consistency is observed in the shapes of their
components and the patterns of component pro-
portion fluctuations (Fig. 4). A key observation is
the frequent alternation in the proportions of
coarse components C3 (ca 50 lm) and C4 (ca
250 lm) (Fig. 4I and L). The sedimentological
implications of component C4 are relatively
straightforward. It can be readily identified in
measured GSDs (Fig. 4G and J) and its grain-size
attributes align with numerous channel deposits
(Cheetham et al., 2008; Hajek et al., 2010; Zhang
et al., 2015). Elevated proportions of C4 in the stra-
tum suggest channel developments. The close
association between C3 and C4 implies that C3 rep-
resents the comparatively finer component depos-
ited when floodplain water dynamics weaken
following the transportation of coarse particles
across the channel by runoff. Its grain-size charac-
teristics align with floodplain deposits reported in
other studies (Fan et al., 2006; Pan et al., 2015;
Vandenberghe et al., 2018). Regarding the remain-
ing silt-sized components C1 (ca 1.4 lm) and C2

(ca 8.8 lm), they are transported by suspension
via runoff, and their proportions are relatively
higher in depositional environments with less riv-
erine influence (for example, oxbow lakes and
river marshes).
Liu et al. (2023) have already provided a

detailed description and discussion of the
decomposition results of the HX borehole. Com-
pared to the HX borehole, the most noticeable
difference in the decomposition results of the
WB1 borehole is its significantly lower propor-
tions of coarse components (C4 and C5) (Fig. 4O
and R). This evidence suggests that the WB1
borehole had a higher lake water level than the
HX borehole, with its sedimentary facies pre-
dominantly characterized by shallow lake and
delta front sub-facies. In general, the decomposi-
tion results of UDM indicate that it can effec-
tively handle grain-size data from various
sediment types, whether it comes from wind-
blown loess deposits with relatively simple
grain-size characteristics or from complex lake
delta deposits resulting from the combined
depositional dynamics of wind, rivers and lakes.

Comparison of different generators

The two proposed metrics, component precision
and Wasserstein distance, demonstrated excel-
lent convergence in actual results (Fig. S11),
indicating their effectiveness in evaluating
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A B C
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J K L

M N O

P Q R

Fig. 4. The measured grain-size distributions (GSDs) (left), components (middle) and proportions (right) decom-
posed by universal decomposition model (UDM) on several selected sites. The components from fine to coarse are
C1 to C5. From top to bottom, the first and second rows show the decomposition results of two typical sites from
the proximal and distal regions of the Chinese Loess Plateau (CLP), respectively. The third and fourth rows show
the decomposition results of two fluvial boreholes, and the fifth and sixth rows show the decomposition results of
two lake delta boreholes. For more results from other sites, please refer to the Supplementary Information.
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generator performance. This study compared the
performance of six types of GAN generators on
different sediment type training datasets based
on these two metrics (Fig. 5, refer to the Supple-
mentary Information for more details). The
results showed that these generators perform
optimally when processing loess data due to its
simpler characteristics and fewer components.
Moreover, the performance of the original GAN
is generally inferior, and model collapse can
easily occur during its training process
(Fig. S11), leading to a higher demand for rea-
sonable hyperparameter settings. While WGAN
can theoretically enhance the stability, its
aggressive gradient clipping strategy makes its
performance improvement unstable and occa-
sionally leads to a sudden decrease in perfor-
mance (Fig. S11). For SNGAN, it provides a very
stable improvement in model performance and
is not sensitive to hyperparameter settings.

Importantly, replacing linear layers with convo-
lutional layers significantly improves generator
performance (Fig. 5). As a result, the CONV
SNGAN demonstrates superior and more consis-
tent performance (Video 1).
In terms of the diversity of data generated by

the generator, except for the overall poor perfor-
mance of MLP GAN, the overall level of other
GANs is similar (Fig. 5B), but there are differ-
ences in the specific details of data distributions
(Figs S12 to S15). These differences are rela-
tively random among different generators and
do not have an obvious pattern. This situation
may be due to randomness caused by the train-
ing method of deep learning models (for exam-
ple, model initialization and stochastic gradient
descent). On the other hand, it may also be due
to small model parameter scale or suboptimal
hyperparameter settings, resulting in insufficient
ability of the model to learn and memorize data
distribution, and can only focus on generating a
portion of the data. Considering these factors, all
generators were used to generate data in the last
sub-experiment when training decomposers, to
ensure that the data diversity is optimal (Fig. 8).
Furthermore, the current datasets pertaining

to fluvial and lake delta are limited, resulting in
their data distribution appearing as isolated
clusters, indicating a lack of diversity (Figs S14
and S15). Interestingly, it is observed that the
extent of data distribution for the generated sam-
ples tends to be broader (Fig. S14). This suggests
that certain inaccuracies in the generator’s learn-
ing of real data distribution could potentially
enhance the diversity of the generated dataset.

Influence of data augmentation

A collection of decomposers was trained utilizing
loess data, following the experimental design out-
lined in the preceding section. Subsequent perfor-
mance evaluation revealed that the LMSE of the
decomposer, with training sample sizes spanning
from 1024 to 102 400, exhibits a gradual decrease
as the quantity of training samples increases.
This trend is more evident in the test sets, suggest-
ing that an increase in the number of training sam-
ples can indeed enhance the performance of
the decomposer, particularly its generalization
performance. In scenarios characterized by limited
training data, despite the decomposer demonstrat-
ing satisfactory performance on the training set, its
LMSE on the test sets remained significantly
high, indicating a deficiency in generalization per-
formance. Moreover, when the quantity of training
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Fig. 5. The performance comparison of six generators
trained with data from different sediment types. For
the definitions of two evaluation metrics, component
precision and Wasserstein distance, please refer to the
main text.
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samples escalated from 102 400 to 200 704, the
LMSE of the decomposer unexpectedly increased,
suggesting that the application of GANs for data
augmentation has certain limitations. Notably, in
comparison to employing a single generator, the
LMSE of the decomposer trained using multiple
generators is considerably lower. This could imply
that the diversity of training data is of greater
importance than the quantity. Furthermore, in
comparison to the traditional grain-size decompo-
sition algorithm (UDM, represented by red hori-
zontal lines in Fig. 6), achieving a performance
level comparable to it is challenging when using a
single generator. However, when multiple genera-
tors are employed, only approximately 50 000
training samples are required to achieve a perfor-
mance slightly superior to it, and these generators
were trained with approximately 6000 actual sam-
ples. In summary, although the use of GANs for
data augmentation can indeed mitigate the chal-
lenges associated with model training with a low
sample volume, it imposes higher demands on the
training of GANs.

Performance of the decomposers

A detailed comparison of the decomposition
results from UDM and the decomposer at each site

was conducted (Fig. 7 and Figs S20 to S22). The
results indicate that the decomposer’s perfor-
mance on different sediment types in the training
sets is very consistent with UDM, suggesting that
the decomposer can accurately learn the latent
knowledge embedded in UDM’s decomposition
results (Video 2). Furthermore, most decomposi-
tion results are reliable when examining
each sample’s specific decomposition situation
(Figs S23 to S25). However, for some test sets –
especially those whose sample data distribution
significantly differs from that of training samples
(Fig. 8) – the decomposition results are subopti-
mal. For instance, the decomposition results on
the three datasets from Arid Central Asia (ACA) –
CMG, Osh and BSK – are not consistent with that
of UDM (Fig. 7 and Fig. S22). Although both
belong to aeolian deposition, due to certain differ-
ences in formation mechanisms and grain-size
characteristics between loess in the CLP and
ACA, it is challenging to directly apply a decom-
poser trained on CLP loess to decompose grain-
size data from ACA loess. Additionally, the
decomposer’s performance when decomposing
grain-size data from FS18 is not ideal, mainly
reflected in the inaccuracy of C1 (Fig. 7). This may
be because C1 in the FS18 profile is much finer
compared to C1 at other sites (Fig. S1K). However,

Video 1: The artificial loess samples generated by CONV SNGAN. This video lasts for 60 s, contains 300 frames,
each frame displays the specific situation of 12 randomly generated samples, showing a total of 3600 generated
samples.
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the decomposer’s performance is not poor on all
test sets; it performs very well on LX and NLK
(Fig. 7). This indicates that the decomposer
retains a certain degree of generalization capabil-
ity; at a minimum, a model trained on loess grain-
size data since the last interglacial can be utilized
to decompose loess grain-size data from older
strata.

Evaluation of the classifier

The classifier’s test set, encompassing 14 656
randomly chosen samples, which constitute
20% of the total dataset size, was employed to
evaluate the classifier’s performance and
to ascertain potential overfitting. The results
obtained (Table 2) indicated an overall accuracy
of 97% on the test set. Nonetheless, a marginally
reduced precision was noted, specifically for
samples derived from fluvial sediments. This
inconsistency could be attributed to the over-
simplification involved in classifying these three
types of sediments, given that lake deltas also
comprise sediments bearing close resemblance
to fluvial sediments, thereby introducing chal-
lenges in attaining higher levels of accuracy. In
summary, the trained classifier demonstrated
commendable performance on the test set, as
evidenced by multiple indicators, with no
apparent signs of overfitting.

DISCUSSION

Advantages and limitations of the proposed
framework

The primary benefit of the deep learning-based
decomposition framework lies in its ability to
mitigate uncertainties arising from inappropriate
algorithm configurations in traditional methods
due to user inexperience. While traditional
methods’ decomposition results serve as training
data within this framework, these results can be
uniformly supplied by several experts with
extensive professional expertise. This approach
circumvents artificial uncertainties stemming
from individual variations in professional
knowledge backgrounds. Furthermore, decompo-
sition models trained using deep learning tech-
niques offer significant advantages in inferential
performance, enabling rapid processing of data
awaiting decomposition.
Moreover, deep learning-based models are not

mere replacements for traditional methods. Par-
ticularly during initial stages when training data-
sets are limited and lack diversity, models may
exhibit inadequate generalization capabilities.
While these models cannot entirely supplant tra-
ditional methods in delivering highly accurate
results, they can provide reasonable initial
parameters to aid traditional methods in

A B

Fig. 6. Influence of training set size on decomposer performance. LMSE refers to the overall logarithmic mean
squared error of the decomposition results. Red horizontal lines indicate the median LMSE of the universal
decomposition model (UDM) algorithm on the training/test sets.
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Fig. 7. The comparison of the decomposition results on several representative sites yielded by the universal decom-
position model (UDM) and the trained decomposers (denoted as DL). The first and second columns show the compo-
nents and proportions obtained by UDM, respectively. The third and fourth columns show the components and
proportions obtained by the trained decomposers, respectively. The first to fourth rows show the decomposition
results of four representative loess test sets. The fifth and sixth rows show the decomposition results of fluvial and
lake delta boreholes, respectively. For more results from other sites, please refer to the Supplementary Information.
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achieving superior outcomes and reducing their
heavy reliance on parameter settings. Although
this study employs the traditional method, UDM,
for providing training data, it does not imply that
the proposed deep learning framework is entirely
tied to it. Future research could easily transition
or incorporate multiple traditional methods
should superior alternatives emerge. Importantly,
comparing to the pure-deep learning approach,
integrating with traditional methods can ensure
the interpretability of the deep learning model.

Possible approaches to improving the
capacity of decomposers

In deep learning models, our aspiration for them
is to exhibit robust generalization capabilities,
enabling them to handle diverse datasets. Given
that deep learning currently operates on a data-
driven paradigm, its generalization capabilities
hinge on the diversity of data encountered during
training. This has been demonstrated by the per-
formances of our trained decomposers on the test
sets. Consequently, enhancing a model’s capabil-
ity lies in supplying it with diverse training data.
One prominent approach involves extensive data
integration, which will be a focal point in future
research. Alternatively, existing data can be

augmented. A key aspect of this study involved
using GANs for data augmentation. The results
indicate that this approach yielded positive out-
comes and confirmed its viability. Besides this,
conventional methods for data augmentation
exist, such as preserving component shapes and
making minor adjustments to their mode size.
Future research could explore incorporating more
conventional methods of data augmentation to
further diversify training data.

Prospects of grain-size research

Sediment grain-size analysis has been a promi-
nent topic within sedimentology for nearly a
century. The introduction of advanced tools like
laser particle size analysers has substantially
improved the generation of accurate and reliable
grain-size data for fine particles, thereby leading
to an array of new scientific challenges. A pri-
mary issue involves interpreting the geological
significance tied to grain-size components and
their fluctuations. This subject has been thor-
oughly investigated in numerous studies
employing decomposition techniques, yet some
interpretations remain disputed. For instance,
interpretations regarding fine-grained compo-
nents (ca 10 lm) in loess continue to be

Video 2: The decomposition results of the loess decomposer on the training sets. This video lasts for 60 s,
contains 300 frames, each frame displays the specific decomposition situation of 12 randomly selected samples,
showing a total of 3600 decomposition results.
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Fig. 8. The comparison of the data distributions of loess samples from the Chinese Loess Plateau (CLP; training
sets), arid Central Asian (ACA; test sets) and CLP combined with generative adversarial network (GAN)-generated
data. Each subfigure uses mean grain size (Mz) and sorting coefficient (So) to show the sample distribution, and
uses colour to indicate the sample density, with warmer colours indicating higher density. From top to bottom,
the first row shows the distribution of the bulk samples, and the second to fourth rows show the distribution of
components C1 to C3, respectively. By comparing the sample distributions of different datasets, the differences in
their data diversity can be easily identified.
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contentious (Qiang et al., 2010; Vandenberghe
et al., 2018; Li et al., 2022), despite attempts by
some studies to utilize them in unveiling vari-
ability in westerlies (Sun, 2004; Prins
et al., 2007; Yang et al., 2023). The findings of
this study indicate pronounced differences in
grain-size characteristics between CLP and ACA
loess, with noticeable spatial heterogeneity
within CLP loess profiles. Presumably, these dis-
parities could be linked to loess formation
mechanisms and associated environmental and
climatic factors such as altitude, latitude and
precipitation. Future research could leverage
grain-size decomposition for an in-depth com-
parison of spatial heterogeneity among different
components and their relationships with various
factors, potentially leading to a more compre-
hensive understanding of these components’
specific geological significance.
The conflicts on the interpretation have ham-

pered the widespread use of grain-size decomposi-
tion and the potential of various grain-size
indicators in sedimentology and palaeoclimatol-
ogy. In general, these conflicts perhaps arise from
incorrect applications of analysis methods or a lack
of comprehensive understanding of the relation-
ships between grain size and sedimentary environ-
ments. The first step towards resolving these
conflicts involves addressing uncertainties associ-
ated with decomposition methods. It is essential to
thoroughly compare these methods, ascertain their
applicability and establish usage guidelines. Con-
currently, it is crucial to draw insights from other
disciplines and strive to develop innovative
methods. A more precise understanding of the
applicability of existing methods or re-analysis of
previous data using new methods could allow for
a re-evaluation of past conclusions, leading to
more reliable insights. The deep learning-based
decomposition framework proposed in this study
aims to address uncertainties associated with cur-
rent decomposition methods and establish a

reliable and user-friendly decomposition model.
Although the framework has only been tested on a
small-scale dataset comprising three types of sedi-
ments, it has demonstrated the feasibility of this
approach. Once enough grain-size data from vari-
ous sediment types are collected, an ultimate
decomposition model can be trained following this
framework. On another note, most current studies
using grain-size decomposition are typically based
on sediment samples from specific regions and
lack large-scale integration and comparison. With-
out a global perspective, the conclusions drawn
are often biased, leading to conflicting results
across different studies. Hence, there is a pressing
need for data integration and comparison, followed
by comprehensive analysis using unified methods.
This approach will facilitate a reliable understand-
ing of fundamental issues that can guide future
research.
Generally, the aforementioned solutions

depend heavily on extensive grain-size data.
Despite the academic community amassing a
substantial amount of such data over years of
research, the absence of specific guidelines for
its release and sharing has hindered its full utili-
zation. Consequently, it is urged that scholars
and research communities promptly establish
guidelines for grain-size data sharing, a step
integral to sediment grain-size studies and their
subsequent applications.

CONCLUSIONS

In this paper, a novel deep learning-based frame-
work for grain-size decomposition of terrigenous
clastic sediments is introduced to reconcile a
long-standing challenge in application of grain-
size data for palaeoenvironmental reconstruction.
By integrating traditional methods and deep
learning techniques, a novel framework is devel-
oped that can deal with methodological uncer-
tainty and subjectivity, providing a user-friendly,
unified model for grain-size decomposition. Test-
ing on a small-scale dataset of three sediment
types shows promising results for the framework.
The proposed framework can achieve comparable
decomposition performance on all training sets
and partial test sets. The poor performance on
some test sets is due to their large differences
from the training data, which implies the impor-
tance of data diversity. It is suggested that future
research should focus on data collection and inte-
gration, introducing advanced deep learning
techniques, and conducting global comparisons.

Table 2. The evaluation results of the classifier.

Precision Recall F1-score Support

Loess 0.98 0.98 0.98 3007
Fluvial 0.85 0.84 0.85 1184
Lake delta 0.98 0.98 0.98 10 465
Accuracy – – 0.97 14 656
Macro
average

0.94 0.93 0.93 14 656

Weighted
average

0.97 0.97 0.97 14 656

� 2024 International Association of Sedimentologists, Sedimentology

18 Y. Liu et al.

 13653091, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sed.13195 by Syracuse U

niversity L
ibraries, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ACKNOWLEDGEMENTS

We express our gratitude to the editor and anony-
mous reviewers for their constructive and
enhancing feedback, which significantly
improved the quality of our manuscript. We are
also thankful to Yuxiang Shi and Jiawang Ge for
their insightful comments on a preliminary ver-
sion of this manuscript. Our appreciation extends
to Hua Wang, Min Zhao, Yili Long and Huimin
Fan for their assistance in the field
and laboratory. The financial support for this
study was provided by the Chinese Academy of
Sciences (No. XDB40000000), the National Natu-
ral Science Foundation of China (No. 42177429),
the Youth Innovation Promotion Association of
the Chinese Academy of Sciences (No. 2023428),
the open fund of State Key Laboratory of Loess
and Quaternary Geology, IEECAS (No.
SKLLQG2337) and the Xiaogan Natural Science
Program (No. XGKJ2023010065).

DATA AVAILABILITY STATEMENT

The improved UDM’s algorithm implementation,
in conjunction with the QGrain software, is
accessible on GitHub at the following link:
https://github.com/yuriok/QGrain. The scripts
utilized for constructing and training the deep
learning models, overseeing the training proce-
dures, and assessing the training outcomes can be
found in this GitHub repository: https://github.
com/yuriok/gsdecomposer. Additional technical
details are available in the Supplementary Infor-
mation accompanying this paper. Additional data
related to this paper may be requested from the
authors.

REFERENCES

Al-Najjar, H.A.H. and Pradhan, B. (2021) Spatial landslide

susceptibility assessment using machine learning techniques

assisted by additional data created with generative

adversarial networks. Geosci. Front., 12, 625–637.
Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike,

P., Nasrin, M.S., Van Esesn, B.C., Awwal, A.A.S. and

Asari, V.K. (2018) The history began from AlexNet: a

comprehensive survey on deep learning approaches.

arXiv, https://doi.org/10.48550/arXiv.1803.01164.

An, Z., Sun, Y., Zhou, W., Liu, W., Qiang, X., Wang, X.,
Xian, F., Cheng, P. and Burr, G.S. (2014) Chinese loess

and the East Asian monsoon. In: Late Cenozoic Climate

Change in Asia (Ed. An, Z.), Springer Netherlands,

Dordrecht, 16, 23–143.

An, Z., Zhang, P., Vogel, H., Song, Y., Dodson, J., Wiersberg, T.,
Feng, X., Lu, H., Ai, L. and Sun, Y. (2020) Scientific drilling

workshop on the Weihe Basin Drilling Project (WBDP):

cenozoic tectonic–monsoon interactions. Sci. Drill., 28, 63–73.
Arjovsky, M., Chintala, S. and Bottou, L. (2017) Wasserstein

generative adversarial networks. In: Proceedings of the
34th International Conference on Machine Learning,

PMLR, 214–223.
Bergen, K.J., Johnson, P.A., de Hoop, M.V. and Beroza, G.C.

(2019) Machine learning for data-driven discovery in solid

Earth geoscience. Science, 363, eaau0323.
Cheetham, M.D., Keene, A.F., Bush, R.T., Sullivan, L.A. and

Erskine, W.D. (2008) A comparison of grain-size analysis

methods for sand-dominated fluvial sediments.

Sedimentology, 55, 1905–1913.
D’Arcy, M., Roda-Boluda, D.C. and Whittaker, A.C. (2017)

Glacial-interglacial climate changes recorded by debris

flow fan deposits, Owens Valley, California. Quatern. Sci.
Rev., 169, 288–311.

Dhillon, A. and Verma, G.K. (2020) Convolutional neural

network: a review of models, methodologies and

applications to object detection. Prog. Artif. Intell., 9, 85–112.
Dietze, E. and Dietze, M. (2019) Grain-size distribution

unmixing using the R package EMMAgeo. E&G Quat. Sci.

J., 68, 29–46.
Dietze, E., Hartmann, K., Diekmann, B., IJmker, J.,

Lehmkuhl, F., Opitz, S., Stauch, G., W€unnemann, B. and
Borchers, A. (2012) An end-member algorithm for

deciphering modern detrital processes from lake

sediments of Lake Donggi Cona, NE Tibetan Plateau,

China. Sed. Geol., 243–244, 169–180.
Dietze, M., Schulte, P. and Dietze, E. (2022) Application of

end-member modelling to grain-size data: constraints and

limitations. Sedimentology, 69, 845–863.
Epuna, F., Shaheen, S.W. and Wen, T. (2022) Road salting

and natural brine migration revealed as major sources of

groundwater contamination across regions of northern

Appalachia with and without unconventional oil and gas

development. Water Res., 225, 119128.
Esmaeiloghli, S., Tabatabaei, S.H. and Carranza, E.J.M.

(2023) Infomax-based deep autoencoder network for

recognition of multi-element geochemical anomalies

linked to mineralization. Comput. Geosci., 175, 105341.
Fan, M., Song, C., Dettman, D.L., Fang, X. and Xu, X. (2006)

Intensification of the Asian winter monsoon after 7.4 Ma:

grain-size evidence from the Linxia Basin, northeastern

Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth Planet. Sci.
Lett., 248, 186–197.

Folk, R.L. (1966) A review of grain-size parameters.

Sedimentology, 6, 73–93.
Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill

Publishing Company, Austin, TX.

Folk, R.L. and Ward, W.C. (1957) Brazos River bar [Texas]; a

study in the significance of grain size parameters. J. Sed.

Res., 27, 3–26.
Galloway, W.E. and Hobday, D.K. (2012) Terrigenous Clastic

Depositional Systems: Applications to Petroleum, Coal,

and Uranium Exploration. Springer Science & Business

Media, Berlin/Heidelberg, Germany.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014)
Generative adversarial nets. In: Advances in Neural
Information Processing Systems (Eds Ghahramani, Z.,

Welling, M., Cortes, C., Lawrence, N.D. and Weinberger,

K.Q.), Curran Associates, Inc., 27, 2672–2680.

� 2024 International Association of Sedimentologists, Sedimentology

Deep learning-based grain-size decomposition model 19

 13653091, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sed.13195 by Syracuse U

niversity L
ibraries, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/yuriok/QGrain
https://github.com/yuriok/gsdecomposer
https://github.com/yuriok/gsdecomposer
https://doi.org/10.48550/arXiv.1803.01164


Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2020)

Generative adversarial networks. Commun. ACM, 63, 139–144.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and

Courville, A.C. (2017) Improved training of Wasserstein

GANs. In: Advances in Neural Information Processing
Systems (Eds Ghahramani, Z., Welling, M., Cortes, C.,

Lawrence, N.D. and Weinberger, K.Q.), Curran Associates,

Inc., 30, 5767–5777.
Guo, F., Clemens, S.C., Wang, T., Wang, Y., Liu, Y., Wu, F.,

Liu, X., Jin, Z. and Sun, Y. (2021) Monsoon variations

inferred from high-resolution geochemical records of the

Linxia loess/paleosol sequence, western Chinese Loess

Plateau. Catena, 198, 105019.
Hajek, E.A., Huzurbazar, S.V., Mohrig, D., Lynds, R.M. and

Heller, P.L. (2010) Statistical characterization of grain-size

distributions in sandy fluvial systems. J. Sediment. Res.,

80, 184–192.
van Hateren, J.A., Prins, M.A. and van Balen, R.T. (2018)

On the genetically meaningful decomposition of grain-size

distributions: a comparison of different end-member

modelling algorithms. Sed. Geol., 375, 49–71.
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual

learning for image recognition. In: 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 770–778.
He, Y., Zhou, Y., Wen, T., Zhang, S., Huang, F., Zou, X., Ma,

X. and Zhu, Y. (2022) A review of machine learning in

geochemistry and cosmochemistry: method improvements

and applications. Appl. Geochem., 140, 105273.
Heslop, D., von Dobeneck, T. and H€ocker, M. (2007) Using

non-negative matrix factorization in the “unmixing” of

diffuse reflectance spectra. Mar. Geol., 241, 63–78.
Hou, K., Qian, H., Zhang, Y., Zhang, Q. and Qu, W. (2021)

New insights into loess formation on the southern margin

of the Chinese Loess Plateau. Catena, 204, 105444.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,

Ronneberger, O., Tunyasuvunakool, K., Bates, R., �Z�ıdek,
A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A.,
Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S.,
Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D.,
Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M.,
Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O.,
Senior, A.W., Kavukcuoglu, K., Kohli, P. and Hassabis, D.
(2021) Highly accurate protein structure prediction with

AlphaFold. Nature, 596, 583–589.
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012)

ImageNet classification with deep convolutional neural

networks. Adv. Neural Inf. Process. Syst., 25, 1097–1105.
Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998)

Gradient-based learning applied to document recognition.

Proc. IEEE, 86, 2278–2324.
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning.

Nature, 521, 436–444.
Li, Y., Song, Y., Fitzsimmons, K.E., Chen, X., Prud’homme,

C. and Zong, X. (2020) Origin of loess deposits in the

North Tian Shan piedmont, Central Asia. Palaeogeogr.

Palaeoclimatol. Palaeoecol., 559, 109972.
Li, Y., Song, Y., Kaskaoutis, D.G., Zan, J., Orozbaev, R.,

Tan, L. and Chen, X. (2021) Aeolian dust dynamics in the

Fergana Valley, Central Asia, since ~30 ka inferred from

loess deposits. Geosci. Front., 12, 101180.
Li, Y., Song, Y., Fitzsimmons, K.E., Dave, A.K., Liu, Y.,

Zong, X., Sun, H., Liu, H. and Orozbaev, R. (2022)

Investigating potential links between fine-grained

components in loess and westerly airflow: evidence from

East and Central Asia. Front. Earth Sci., 10. https://doi.

org/10.3389/feart.2022.901629.

Li, Y., Song, Y., Chen, X., Shi, Z., Kaskaoutis, D.G.,
Gholami, H. and Li, Y. (2023) Late Pleistocene dynamics

of dust emissions related to westerlies revealed by

quantifying loess provenance changes in North Tian Shan,

Central Asia. Catena, 227, 107101.
Liang, P. and Yang, X. (2023) Grain shape evolution of sand-

sized sediments during transport from mountains to dune

fields. J. Geophys. Res. Earth, 128, e2022JF006930.
Liu, T. (1985) Loess and the Environment. China Ocean

Press, Beijing, China.

Liu, Y., Liu, X. and Sun, Y. (2021) QGrain: an open-source

and easy-to-use software for the comprehensive analysis of

grain size distributions. Sed. Geol., 423, 105980.
Liu, Y., Wang, T., Liu, B., Long, Y., Liu, X. and Sun, Y.

(2023) Universal decomposition model: an efficient

technique for palaeoenvironmental reconstruction from

grain-size distribution. Sedimentology, 70, 2127–2149.
Lu, H. and An, Z. (1997) The influence of pre-treatment to grain

size analysis results of loess. Chin. Sci. Bull., 42, 2535–2538.
Ma, L., Li, Y., Liu, X. and Sun, Y. (2017) Registration of

precession signal in the last interglacial paleosol (S1) on

the Chinese Loess Plateau. Geochem. Geophys. Geosyst.,

18, 3964–3975.
McLaren, P. and Bowles, D. (1985) The effects of sediment

transport on grain-size distributions. J. Sed. Res., 55, 457–470.
Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y. (2018)

Spectral normalization for generative adversarial networks.

In: International Conference on Learning Representations.

Pan, B., Pang, H., Zhang, D., Guan, Q., Wang, L., Li, F.,
Guan, W., Cai, A. and Sun, X. (2015) Sediment grain-size

characteristics and its source implication in the Ningxia–
Inner Mongolia sections on the upper reaches of the

Yellow River. Geomorphology, 246, 255–262.
Paterson, G.A. and Heslop, D. (2015) New methods for

unmixing sediment grain size data. Geochem. Geophys.

Geosyst., 16, 4494–4506.
Peng, J., Zhao, H., Dong, Z., Zhang, Z., Yang, H. and Wang,

X. (2022) Numerical methodologies and tools for efficient

and flexible unmixing of single-sample grain-size

distributions: application to late quaternary aeolian

sediments from the desert-loess transition zone of the

Tengger Desert. Sed. Geol., 438, 106211.
Pettijohn, F.J. (1975) Sedimentary Rocks, 3rd edn. Harper

and Row Publishers, New York.

Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu,
H., Zheng, H. and Jan Weltje, G. (2007) Late quaternary

aeolian dust input variability on the Chinese Loess

Plateau: inferences from unmixing of loess grain-size

records. Quatern. Sci. Rev., 26, 230–242.
Pye, K. (1995) The nature, origin and accumulation of loess.

Quatern. Sci. Rev., 14, 653–667.
Qiang, M., Lang, L. and Wang, Z. (2010) Do fine-grained

components of loess indicate westerlies: insights from

observations of dust storm deposits at Lenghu (Qaidam

Basin, China). J. Arid Environ., 74, 1232–1239.
Qin, X., Cai, B. and Liu, T. (2005) Loess record of the

aerodynamic environment in the east Asia monsoon area since

60,000 years before present. J. Geophys. Res., 110, B01204.
Reineck, H.-E. and Singh, I.B. (2012) Depositional

Sedimentary Environments: With Reference to Terrigenous
Clastics. Springer Science & Business Media, Berlin.

Ruddiman, W.F. (2001) Earth’s Climate: Past and Future.

MacMillan, New York, NY.

� 2024 International Association of Sedimentologists, Sedimentology

20 Y. Liu et al.

 13653091, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sed.13195 by Syracuse U

niversity L
ibraries, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.3389/feart.2022.901629
https://doi.org/10.3389/feart.2022.901629


Seidel, M. and Hlawitschka, M. (2015) An R-based function

for modeling of end member compositions. Math. Geosci.,

47, 995–1007.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,

Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van
den Driessche, G., Graepel, T. and Hassabis, D. (2017)

Mastering the game of go without human knowledge.

Nature, 550, 354–359.
Sun, D. (2004) Monsoon and westerly circulation changes

recorded in the late Cenozoic aeolian sequences of

Northern China. Glob. Planet. Chang., 41, 63–80.
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang,

F., An, Z. and Su, R. (2002) Grain-size distribution

function of polymodal sediments in hydraulic and aeolian

environments, and numerical partitioning of the

sedimentary components. Sed. Geol., 152, 263–277.
�Ujv�ari, G., Kok, J.F., Varga, G. and Kov�acs, J. (2016) The

physics of wind-blown loess: implications for grain size

proxy interpretations in quaternary paleoclimate studies.

Earth-Sci. Rev., 154, 247–278.
Vandenberghe, J. (2013) Grain size of fine-grained

windblown sediment: a powerful proxy for process

identification. Earth-Sci. Rev., 121, 18–30.
Vandenberghe, J., Sun, Y., Wang, X., Abels, H.A. and

Liu, X. (2018) Grain-size characterization of reworked

fine-grained aeolian deposits. Earth-Sci. Rev., 177, 43–52.
Varga, G., �Ujv�ari, G. and Kov�acs, J. (2019) Interpretation of

sedimentary (sub)populations extracted from grain size

distributions of Central European loess-paleosol series.

Quat. Int., 502, 60–70.
Vaserstein, L.N. (1969) Markov processes over denumerable

products of spaces, describing large systems of automata.

Probl. Peredachi Inf., 5, 64–72.
Visher, G.S. (1969) Grain size distributions and depositional

processes. J. Sed. Res., 39, 1074–1106.
Wang, F., Wang, F., Zhang, W., Xu, S. and Lai, Z. (2023) A

novel machine learning fingerprinting method using

sparse representation for provenance detection in delta

sediments. Catena, 227, 107095.
Weltje, G.J. (1997) End-member modeling of compositional

data: numerical-statistical algorithms for solving the

explicit mixing problem. Math. Geol., 29, 503–549.
Weltje, G.J. and Prins, M.A. (2003) Muddled or mixed?

Inferring palaeoclimate from size distributions of deep-sea

clastics. Sed. Geol., 162, 39–62.
Weltje, G.J. and Prins, M.A. (2007) Genetically meaningful

decomposition of grain-size distributions. Sed. Geol., 202,
409–424.

Wen, T., Chen, C., Zheng, G., Bandstra, J. and Brantley, S.L.
(2022) Using a neural network – physics-based hybrid model

to predict soil reaction fronts. Comput. Geosci., 167, 105200.
Wu, L., Krijgsman, W., Liu, J., Li, C., Wang, R. and Xiao, W.

(2020) CFLab: a MATLAB GUI program for decomposing

sediment grain size distribution using Weibull functions.

Sed. Geol., 398, 105590.
Yang, S., Zhou, J., Chen, Z., Li, P., Wen, C., Xu, X. and Li, Q.

(2023) Westerly Variations in the Eastern Tibetan Plateau

since the last interglacial revealed by the grain-size records

of the Ganzi loess. Atmos., 14, 238.
Yu, S., Colman, S.M. and Li, L. (2016) BEMMA: a hierarchical

Bayesian end-member modeling analysis of sediment grain-

size distributions. Math. Geosci., 48, 723–741.
Zhang, X., Li, Z., Li, P., Cheng, S., Zhang, Y., Tang, S. and

Wang, T. (2015) A model to study the grain size components

of the sediment deposited in aeolian–fluvial interplay erosion

watershed. Sed. Geol., 330, 132–140.
Zhang, X., Zhou, A., Wang, X., Song, M., Zhao, Y., Xie, H.,

Russell, J.M. and Chen, F. (2018) Unmixing grain-size

distributions in lake sediments: a new method of endmember

modeling using hierarchical clustering.Quat. Res., 89, 365–373.
Zhang, X., Wang, H., Xu, S. and Yang, Z. (2020) A basic

end-member model algorithm for grain-size data of

marine sediments. Estuar. Coast. Shelf Sci., 236, 106656.
Zhang, J., Lv, D., Chen, H., Yu, C., Zhao, K., Liu, X., Liu, Y.,

Zhang, H., Liu, B., Qiang, X., Kang, S. and Sun, Y. (2024)
Evolution of sedimentary environment in the Eastern

Henan Basin since the Late Pliocene. Palaeogeogr.

Palaeoclimatol. Palaeoecol., 633, 111896.

Manuscript received 13 November 2023; revision
accepted 27 March 2024

Supporting Information

Additional information may be found in the online

version of this article:

Figure S1. The measured grain-size distributions
(GSDs) (left), components (middle) and proportions
(right) decomposed by UDM.

Figure S2. The measured GSDs (left), components
(middle) and proportions (right) decomposed by UDM.

Figure S3. The measured GSDs (left), components
(middle) and proportions (right) decomposed
by UDM.

Figure S4. The loss variations of the generator and
discriminator in MLP (multilayer perceptron) GAN for
loess.

Figure S5. The comparison of the GSDs, scaled com-
ponents, and original components between the real
loess samples (left) (decomposed by UDM) and gener-
ated loess samples by MLP GAN (right).

Figure S6. Eighteen grain-size samples of loess ran-
domly generated by MLP GAN.

Figure S7. The probability density of each statistical
parameter (mean, standard deviation, skewness, kur-
tosis) for generated loess samples by MLP GAN.

Figure S8. The comparison of the data distribution
between training loess samples (left) and generated
loess samples (right) by MLP GAN.

Figure S9. The variation in the component precision
of each component as the number of training batches
increases during the training processes of MLP GAN
for loess.

Figure S10. The variation in the Wasserstein distance
of each statistical parameter of each component as the
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number of training batches increases during the train-
ing processes of MLP GAN for loess.

Figure S11. The variations in the evaluation metrics
of the generators as the number of training batches
increases.

Figure S12. Comparison of the distributions learned
by the generators with the true distributions of the
measured samples.

Figure S13. Comparison of the sample distributions
learned by different generators with the observed dis-
tributions of the measured samples for the loess
datasets.

Figure S14. Comparison of the sample distributions
learned by different generators with the observed dis-
tributions of the measured samples for the fluvial
datasets.

Figure S15. Comparison of the sample distributions
learned by different generators with the observed dis-
tributions of the measured samples for the lake delta
datasets.

Figure S16. Eighteen grain-size samples of loess ran-
domly generated by CONV (convolutional) SNGAN.

Figure S17. Eighteen grain-size samples of fluvial
deposits randomly generated by CONV SNGAN.

Figure S18. Eighteen grain-size samples of lake delta
sediments randomly generated by CONV SNGAN.

Figure S19. The specific results of the control experi-
ments in each profile and borehole.

Figure S20. The comparison of the decomposition
results yielded by UDM and the trained decomposer
(denoted as DL).

Figure S21. The comparison of the decomposition
results yielded by UDM and the trained decomposer
(denoted as DL).

Figure S22. The comparison of the decomposition
results yielded by UDM and the trained decomposer
(denoted as DL).

Figure S23. The specific decomposition results of sev-
eral loess samples yielded by the trained decomposer.

Figure S24. The specific decomposition results of sev-
eral fluvial samples yielded by the trained
decomposer.

Figure S25. The specific decomposition results of sev-
eral lake delta samples yielded by the trained
decomposer.

Table S1. The initial parameters of each loess site for
the UDM algorithm.

Table S2. The numbers of trainable parameters for dif-
ferent generators and discriminators.

Appendix S1. Technical details and comprehensive
results of the study.

� 2024 International Association of Sedimentologists, Sedimentology
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