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a b s t r a c t

Since the early 2000s, an increasing number of power plants in the U.S. have switched from burning coal
to burning gas and thus have released less SO2 emissions into the atmosphere. We investigated whether
stream chemistry (i.e., SO4

2�) also benefits from this transition. Using publicly available data from
Pennsylvania (PA), a U.S. state with heavy usage of coal as fuel, we found that the impact of SO2 emissions
on stream SO4

2� can be observed as far as 63 km from power plants. We developed a novel model that
incorporates an emission-control technology trend for coal-fired power plants to quantify potentially
avoided SO2 emissions and stream SO4

2� as power plants switched from coal to gas. The results show that,
if 30% of the electricity generated by coal in PA in 2017 had been replaced by that from natural gas, a total
of 20.3 thousand tons of SO2 emissions could have been avoided and stream SO4

2� concentrations could
have decreased as much as 10.4%. Extrapolating the model to other states in the U.S., we found that as
much as 46.1 thousand tons of SO2 emissions per state could have been avoided for a similar 30% coal-to-
gas switch, with potential amelioration of water quality near power plants. The emission-control tech-
nology trend model provides a valuable tool for policy makers to assess the benefits of coal-to-gas shifts
on water quality improvements as well as the effectiveness of emission control technologies.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Impacts of fuel choices

During the last several decades, new technologies of natural gas
(hereafter “gas”) extraction from shale have led some to believe
that shale gas can be a new “clean” energy source in the U.S. (de
Gouw et al., 2014; Gilbert and Sovacool 2017; Massetti et al.,
2017). However, such claims must rely on life cycle analysis to
draw a whole picture of pros and cons of energy choices (Cooper
2017; Stamford and Azapagic 2014). The entire life cycle of gas in-
cludes exploration, drilling, production, transportation, and con-
sumption. An important consideration that has drawn much
interest is the relative release rates of two greenhouse gases, CO2
and CH4, during life cycle analysis of coal and shale gas, and their
e by Sarah Harmon.
effects on climate (Barkley et al., 2019; Gilbert and Sovacool 2017).
In addition to the release rates of CO2 and CH4, however, natural gas
and coal differ in their emission rates of metals and trace gases
during their life cycles as fuel. For example, gas releases much less
SO2 than coal when used as fuel (de Gouw et al., 2014) and the
switch from coal to gas is found to be the second largest cause of
reduction in SO2 emission from 2004 to 2014 in the U.S., next to the
adoption of sulfur-emission-control technology for coal-fired po-
wer plants (Lueken et al., 2016; Massetti et al., 2017). We hypoth-
esized that the shift from coal to gas at power plants could also
impact water quality of nearby streams, and if such impacts are
measurable, they should be considered in future life cycle analyses.
Although much of the deleterious effect of coal-burning emissions
on surface water is related to the acidifying or metal-rich nature of
these emissions (Chen et al., 2013; Sackett et al., 2010), we focused
on sulfate (SO4

2�) concentrations in streams as a proxy for the more
difficult-to-follow effects of acid or metal emissions. We hypothe-
sized that a study of SO4

2� in surfacewaters could be a starting point
for future assessments of the impacts of hydrocarbon-burning
emissions as they deposit back onto the land surface.
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1.2. SO2 emissions from coal-fired power plants

The electric power sector accounts for 64% of economy-wide
SO2 emissions in the U.S., and about 98% of the generated SO2 is
from coal-fired power plants (Massetti et al., 2017). For the last
several decades, the U.S. has seen a dramatic decrease in SO2
emissions from electric power plants, attributing to the imple-
mentation of environmental regulations (Taylor et al., 2005),
adoption of new technologies (Baig and Yousaf, 2017; Taylor et al.,
2005), a fuel switch from coal to gas (de Gouw et al., 2014; Lueken
et al., 2016) and other clean energy sources, such as wind and solar
energy (Millstein et al., 2017). For example, Massetti et al. (2017)
reported that the U.S. SO2 emissions in 2014 were 73% lower than
those in 1970, and the rate of reduction increased rapidly after the
ratification of the Clean Air Act (CAA) amendments in 1990. These
amendments promoted the use of clean low-sulfur coal as well as
innovative technologies to clean high-sulfur coal. Similar trends
were also reported in other studies (de Gouw et al., 2014; Driscoll
et al., 2016; Jiang et al., 2018). Many factors affect the SO2 emis-
sions from coal-fired power plants, including sulfur content in coal,
total electricity generation, and the fraction of plants using flue gas
desulfurization (FGD) (Massetti et al., 2017). Among them,
numerous researchers have suggested that the adoption of new
technologies, such as FGD, account for themajority of SO2 reduction
(Majumdar and Kar 2017; Massetti et al., 2017; Taylor et al., 2005).
Therefore, when assessing the “true” environmental benefits of the
shift from coal to gas in SO2 emissions (and stream SO4

2�), the
contribution of technology adoption (hereafter “technology trend”)
must be taken into account to avoid overestimating the coal-to-gas
effects.

1.3. SO2 emissions vs. stream SO4
2� concentrations

Decreases in SO2 emissions to the atmosphere also result in
decreases in SO4

2� deposition back to the land surface. For example,
studies show that SO4

2� concentrations in surface waters in the
northeastern U.S. have significantly declined since 1992 (Burns
et al., 2020; Driscoll et al., 2016; Gavin et al., 2018; Patel et al.,
2020; Shao et al., 2020), just as anthropogenic emissions of SO2
in the U.S. have declined during the same time period. Similarly, as
the anthropogenic SO2 emissions decreased, Stoddard et al. (1999)
found that SO4

2� concentrations in lakes and streams in North
America and Europe have also declined across regions, generally
with more rapid declines during the 1990s.

Strong correlations between SO4
2� in atmospheric deposition

and surfacewater have been reported in numerous studies (Driscoll
et al., 2016; Kline et al., 2016; Mitchell and Likens 2011; Shao et al.,
2020; Smith and Alexander 1986; Watmough et al., 2016). How-
ever, the transit of sulfur from the atmosphere to stream water is
often hard to determine because of retention in soils and vegetation
(Burns et al., 2020; Patel et al., 2020; Rice et al., 2014; Siemion et al.,
2018). The amount of precipitation and the types of soils and
vegetation all affect the rate of sulfur transferal into the stream
water (Mitchell and Likens 2011; Rice et al., 2014; Shao et al., 2020;
Smith and Alexander 1986). In general, the higher the flux of SO2
emitted into the atmosphere in a given region over a given time
period, the more SO4

2� is delivered to the nearby land surface, and
the more likely it is to be taken up into soils and vegetation. When
atmospheric sulfur deposition decreases, the sulfur is then slowly
released from soil and vegetation to streams (Mitchell et al., 2011;
Rice et al., 2014) and the rate of release varies with soil type and
watershed runoff characteristics (Patel et al., 2020; Rice et al.,
2014). The average lag time between monthly atmospheric depo-
sition and stream chemistry in Appalachian forests (U.S.) from 1978
to 2012 was estimated by one research group to be as long as 48
2

months (DeWalle et al., 2016) but other researchers have identified
much longer time lags (up to two decades) in other locations (Rice
et al., 2014). These “buffer” or “legacy” effects of soils and vegeta-
tion on the transit of sulfur from atmosphere to stream water are
location-dependent (Rice et al., 2014; Smith and Alexander 1986)
because they depend upon thickness and adsorption capacity of
soils as well as recharge ratios of watersheds (Burns et al., 2020;
Patel et al., 2020; Rice et al., 2014). This bufferingmust be addressed
in relating SO2 emissions to stream SO4

2� concentrations.

1.4. Research objectives

Although many researchers have demonstrated that coal-
burning impacts waters and soils worldwide (Driscoll et al., 2016;
Ma et al., 2014; Raymond and Oh 2009), no researchers have yet
investigated whether the recent switch from burning coal to nat-
ural gas is currently affecting surface waters. We addressed this
question by investigating streams in Pennsylvania, a state with a
century-long history of hydrocarbon extraction and burning, and a
publicly accessible record of water chemistry data that spans de-
cades. Our first attempts to simply test for changes in SO4

2� con-
centrations in streams near power plants showed that some
streams showed effects. However, overall, the attempt was
confounded by the small extent of change in SO4

2� in streamwaters
and other factors, including variable effects of dilution by rainfall,
the local nature of emissions on streams, the many changes in the
histories of fuel usage and emission-control technologies at indi-
vidual power plants, and the attenuating effects of soil and vege-
tation uptake of SO4

2�. This is not surprising because many
researchers have seen little to no change in sulfate concentrations
in streams over the decades of decreasing atmospheric emissions in
some parts of the USA (see summary in Rice et al., 2014). While Rice
et al. (2014) developed a modeling approach to assess the effect of
soil retention on stream SO4

2� concentrations, they did not incor-
porate different (or changing) depositional histories in their model.
We therefore developed a model to address some of these factors
and that allowed assessment of the effects on local streamwaters of
the switch in fuel in PA. We then showed that this model also
successfully describes the changes in emissions from power plants
nationwide, and could, in a future study, be used to investigate
nation wide impacts on U.S. stream waters.

In our stepwise approach to the problem, we set out to: 1)
quantify the SO2 emission intensity (hereafter, “SO2EI”); 2) develop
an emission-control technology trend model to simulate the trend
of SO2EI from coal-fired power plants (hereafter “SO2EItrend”); 3)
develop a stream SO4

2� intensity trend model (hereafter “SO4CI-
trend”) to predict stream SO4

2� concentration changes from atmo-
spheric sulfur deposition; 4) extrapolate using the technology trend
model from PA to assess the avoided SO2 emissions (with impli-
cations for the potentially avoided stream water SO4

2� contamina-
tion) as a result of the recent shift from coal to gas in power plants
(hereafter coal-to-gas) across the U.S. By taking into account the
emission-control technologies as well as other factors, our
approach should provide a realistic and accurate assessment of the
benefits of coal-to-gas shifts in terms of water quality at regional
levels. Our findings are critical for future policy decisions.

2. Methods

In this section, we describe themethods used for the assessment
of the impacts of power plant coal-to-gas switch on air (i.e. SO2
emissions) and water quality (i.e. SO4

2� concentrations). First, we
applied a customized semivariogram analysis to determine the
spatial range of the power plant impacts on stream water chem-
istry. We then developed emission-control technology trend
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models to simulate the dynamics of SO2 emissions from coal-fired
power plants and SO4

2� concentrations in nearby streams. Finally,
we applied the trend models to assess the potential impacts of the
coal-to-gas shift using a scenario analysis.
2.1. Research location, data, and data sources

We investigate Pennsylvania (PA, U.S.) because of the long his-
tory of hydrocarbon use (Raymond and Oh 2009), the general
transition from coal to gas over the last decades, and the long re-
cord of water quality data (back to early 1990s) that is publicly
available. A PA map and the locations of coal- and gas-fired power
plants in 2017 and the PAWater Quality Network (WQN) sampling
sites for water quality measurement are shown in Fig. 1.

All data used in this studywere extracted frompublicly available
online data sources and quality-checked before use. The process of
data cleaning includes unifying variable names and units, removing
redundant data, and reformatting data structures to fit in a rela-
tional database (Niu et al., 2018a). Stream SO4

2� concentration data
were downloaded from PAWQN,which is a statewide, fixed-station
water quality sampling system operated by the Bureau of Clean
Water at PA Department of Environmental Protection (DEP) (http://
www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/
Pages/Water-Quality-Network.aspx). WQN hosts data for 257 sites
in PA (Fig. 1) from 1998 to 2016 (the year when data were down-
loaded). Although multiple water quality data sources are available
(e.g., National Water Information System by U.S. Geological Survey
and STORET by U.S. Environmental Protection Agency), our earlier
investigations showed that the use of mixed datasets could lead to
biased results because of the lack of equivalence in temporal
coverage. In contrast, long term monitoring from WQN provided
consistent stream water quality data for temporal trend analysis. A
total of 23,816 non-censored (i.e., above the detection limits) SO4

2�

data from unfiltered surface waters inWQNwere used for analyses,
and a total of 756 censored data were excluded.

Annual data of net generation (netG) of electricity for coal and
gas were extracted from the U.S. Energy Information Administra-
tion form EIA-923 (EIA, https://www.eia.gov/electricity/data.
Fig. 1. Map of Pennsylvania (U.S.) with coal- and gas-fired power plants (as of 2017),
water quality network (WQN) observation sites, and coal mining areas indicated as per
the legend.

3

php#elecenv). This value, netG, is the total generation minus the
energy consumption of the plant itself. This latter consumption,
typically a few percent of total generation, depends on pollution
control equipment. The state-level SO2 emission data from 1990 to
2017 were extracted from the EIA website (https://www.eia.gov/
electricity/data/emissions/). These data were estimated from cal-
culations that applied an emissions factor to total fuel consumption
(EIA electric power annual 2017, https://www.eia.gov/electricity/
annual/). From 1990 to 2017, a total of 40,254 calculated SO2
emissions (inmetric tons) and 49,519 netGmeasurements (in kWh)
at state level were discovered.

2.2. Spatial range of power plant impact on stream SO4
2-

In this study, we applied a semivariogram analysis to determine
the potential range of power plant impacts on stream SO4

2� con-
centrations. Unlike the conventional semivariance which calculates
the dispersion among all pairs of SO4

2� observations, a modified
semivariogram model (Eqn. A1, Appendix A) was developed in this
study to consider only pairs of stream SO4

2� concentrations (at each
WQN-site) with their corresponding power plants. The model ex-
cludes site pairs between WQN water sampling sites. By doing so,
the differences are evaluated between the semivariance and the
distance of a WQN site to a power plant. We focused only on power
plants that had used coal as a primary source (i.e. used coal more
than any other fuel) for at least 10 years during 1990e2017 for the
semivariance analysis. Not every power plant had a nearby WQN
site to provide an on-site stream SO4

2� value. Therefore, we first
created a contoured stream SO4

2� concentration surface by kriging
the mean SO4

2� values of each WQN sites using the ArcGIS Kriging
function (Fig. B1; Appendix B). We then used the interpolated SO4

2�

values to represent the “stream” SO4
2� concentrations at each coal-

fired power plant site. Three semivariogram models were used
(using the ‘gstat’ package in R): Exponential (Exp), Gaussian (Gau),
and Spherical (Sph). Model performance was evaluated using the
root mean square error (RMSE, Eqn. A2, Appendix A), which
quantifies both the bias and the spread of the error distribution
(Merino et al., 2001).

2.3. Technology trend models

2.3.1. Technology trend of SO2 emission intensity
We employed a logistic function to simulate the trend of SO2EI

of coal-fired power plants. The SO2EI is defined as the total SO2
emissions per unit netG generated from coal (kg/MWh). We
assumed that emission control technologies could be considered as
yielding a cumulative effect and that the temporal trend in SO2EI
after adoption of technologies would follow a typical inverse
innovation diffusion cycle (Fig. 2). This cycle includes three stages:
first, a stage characterized by a slow decrease in emission intensity
that results from a few early adopters; second, a stage showing an
accelerated decrease in emission intensity that happens as the
majority of power plants adopts the technology; and third, a stage
showing a slowdown in the rate of decrease in emissions as the
slow-adopters eventually incorporate the technology.

The SO2EI for PA from 1990 to 2016 were calculated using the
state SO2 emissions and netG data reported by the EIA. To reduce
non-technology related factors such as burner type, the SO2EI was
normalized by a reference base value (SO2EInorm, Eqn. (1)) for trend
analysis. The base value was defined as SO2EI before adoption of a
technology or when the first data were available. In this study, we
used a median value of the first three years starting at 1990 as the
base values to avoid any "extreme" values for the very first year of
the data. SO2EInorm values were then used to fit an inverse logistic
model to simulate the trend in SO2 emissions for coal-fired power

http://www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/Pages/Water-Quality-Network.aspx
http://www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/Pages/Water-Quality-Network.aspx
http://www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/Pages/Water-Quality-Network.aspx
https://www.eia.gov/electricity/data.php#elecenv
https://www.eia.gov/electricity/data.php#elecenv
https://www.eia.gov/electricity/data/emissions/
https://www.eia.gov/electricity/data/emissions/
https://www.eia.gov/electricity/annual/
https://www.eia.gov/electricity/annual/


Fig. 2. EIA-estimated annual SO2 emission intensities (SO2EI, black dots) for PA coal-
fired power plants normalized to a base value in 1990. Solid line (blue) represents a
fitted logistic model that describes the SO2EI emission-control technology trend.
Dashed line (red) represents the trend of the SO4

2� concentration intensity (SO4CI, also
normalized to a base value in 1990) in PA streams, which is derived from the SO2EI
trend model and adjusted by a soil/vegetation sulfur-legacy factor (see text for details).
“Intensity” here refers to the annual SO2 emissions (or mean stream SO4

2� concen-
trations) for a given year for the entire state divided by the total net electrical power
generation for the year under consideration. The timing of major U.S. environmental
control regulations is indicated with black vertical dashed lines. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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plants (SO2EItrend, see Eqn. (2)) as new technologies were adopted
over time. The fitted model has an R2 of 0.92 and a p-value <0.01.
The SO2EI is a good indicator of coal burning efficiency with respect
to SO2 emissions. We refer to the trends of the SO2EI as technology
trends for SO2 emissions because SO2EI values were controlled
largely by the adoption of emission-control technologies such as
FGD (Massetti et al., 2017).

SO2EInormðiÞ¼ SO2EI ðiÞ
SO2EIbase

(1)

SO2EItrendðiÞ¼
1

1þ e�ð426:1792�0:21225 * iÞ (2)

where SO2EInorm represents the SO2EI normalized to a base value;
SO2EI(i) is the SO2EI value at year i; SO2EIbase is the SO2EI base
value; and SO2EItrend (i) represents the simulated SO2EI trend value
at year i normalized to the base value.

2.3.2. Technology trend of stream SO4
2� concentration

As discussed above, SO4
2� concentrations in atmospheric depo-

sition strongly correlate to SO2 emissions into the air because SO2

dissolves into aerosols in the atmosphere to form dissolved sulfuric
acid. Many authors have documented that deposition of this SO4

2�

containing rainwater increased the concentrations of protons and
SO4

2� in surface waters (DeWalle et al., 2016; Driscoll et al., 2016).
While dissolved protons in the water tend to react with minerals
and thus decrease in concentration, SO4

2� tends to enter a water-
shed system and be held for various time periods before being
released chemically unchanged. Thus, the long-term spatially
generalized trends between stream SO4

2� and SO2 emissions have
been shown to be similar (Stoddard et al., 1999) while the magni-
tudes of changes in stream water as a function of sulfur emissions
4

over shorter time periods vary from place to place (e.g. Patel et al.,
2020). These latter variations occur because SO4

2� delivered to soils
and vegetation is retained for different time periods in different
locations (Driscoll et al., 1988; Rice et al., 2014). Currently, we are
unable to predict these time lags from easily-observable watershed
characteristics. We therefore proposed an empirical equation (Eqn.
(3)) to predict the trend of SO4

2� concentration intensity (SO4CItrend)
using the SO2EI trend and an empirical legacy sulfate adjusting
factor.

Similar to the concept of SO2EI, the stream SO4
2� concentration

intensity (SO4CI) is defined as the stream SO4
2� concentration

resulting from sulfur emissions per unit of net electric generation
(i.e. SO4

2�/netG).

SO4CItrendðiÞ¼ SO2EItrendðiÞ
þ ð1� SO2EItrendðiÞÞ*fste

(3)

where SO4CItrend and SO2EItrend represent the technology trend
values of the normalized stream SO4

2� concentration intensity and
SO2 emission intensity at a coal-fired power plant at year i,
respectively. Both SO4CItrend and SO2EItrend are unitless values
normalized to their respective base values. The value fste is a unit-
less sulfur transit efficiency factor (describing sulfur-transit from
atmosphere to stream). The second part of Eqn. (3), referred to here
as a legacy sulfate adjusting factor (LS), is calculated as a function of
the fste and the difference between SO2EI values for the base year
and a given year. When the SO2EI at a given year is greater than that
of the base year (i.e. 1 as a normalized value), LS is negative,
meaning that some sulfur deposited from the atmosphere has been
stored transiently in soils and vegetation. When LS is positive, extra
sulfur is released from the soils and vegetation and then delivered
into groundwater/streams. The rate of sulfur uptake or release from
soil and vegetation is controlled by fste, a parameter which varies by
type of soil, vegetation, watershed hydrologic character, and cli-
matic condition (Likens et al., 2002; Patel et al., 2020; Smith and
Alexander 1986). Since the majority of the PA state is covered by
sedimentary rock (shales, sandstones, limestones) and shares
roughly the same climate (Niu et al., 2018b), we assumed a constant
fste value across PA. Glaciation also has a big effect on the retention
of SO4

2� (Rice et al., 2014), such that glaciated soils are often young
and less able to retain SO4

2� while unglaciated soils are older and
more able to retain SO4

2�. Since only about 30% of PA land is covered
by glaciated soils, the effect of glaciation was not incorporated in
this study. Furthermore, we recognize that Rice et al. (2014), based
on the theoretical framework of Cosby et al. (1986), have developed
an approach to model SO4

2� release from soils as a function of
characteristics affected by glaciation, and we wanted instead to
focus on investigating the effect of changing sources of fuel at po-
wer plants. In effect, we wanted to treat the legacy-related release
of SO4

2� from soils as an average value, recognizing that later
models could explore more detailed approaches.

To calculate fste, we therefore estimated the value for previously
determined “pristine” streams in the state that had been docu-
mented to maintain statistically constant SO4

2�concentrations for at
least 10 years (Fig. B2, Appendix B; See Niu et al., 2018b for more
details). For these previously identified 19 “pristine” streams
associated with WQN sites, we first regressed the mean SO4

2�

concentrations in the streams against the state-level SO2 emissions
from coal-fired power plants. Although these nominally pristine
streams are not polluted by coal mines or other point sources, they
are still somewhat affected by atmospheric deposition and thus can
reveal an estimate of fste. Based on the work of Niu et al. (2018b), we
also corrected the total sulfate concentrations in the streams by
removing other sources of SO4

2� (e.g. SO4
2� from weathering of
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sulfide minerals). This yielded an estimate of the stream SO4
2�

concentrations directly attributable to SO2 emissions. We used
6.2 mg/L to represent an estimated minimum background SO4

2�

concentration in PA streams: this value was derived from the
statewide mean SO4

2� concentration (15.8 mg/L) for the pristine
rivers minus one standard deviation (9.6 mg/L). The slope, 0.4901
(p-value ¼ 0.003), of the fitted linear model between PA statewide
SO2 emissions and the mean SO2-induced-stream-SO4

2- was then
used as the estimate for fste for the PA data (see Fig. B3; Appendix B).

2.4. Prediction of stream SO4
2� concentrations

AWQN site may be impacted by several nearby coal-fired power
plants. Assuming the sulfur content in coal is consistent over time,
the total SO2 emissions for a givenWQN site is the product of SO2EI
and the total netG generated from all the nearby relevant coal-fired
power plants. In the following sections, methods for calculating the
distance weighted total netG, SO2 emissions, and SO4

2� predictions
are discussed.

2.4.1. Distance weighted total netG
The extent of impact of power plant emissions on stream SO4

2�

concentrations decreases with distance from the power plant. We
explored buffer zones with distances of 20-, 40-, and 60-km
(Fig. B4; Appendix B) to represent areas with intense, moderate,
or low impacts, respectively (see section 3.1). Assuming that each
zone received 30% of the total emitted sulfur as atmospheric
deposition (with 10% of the sulfur transported outside the region by
wind), the area-weighted densities of sulfur deposition were
calculated and used as the weighting factor for each zone. The
resulting weighting factors (Wdist, see Eqn. A3, Appendix A) are
0.652, 0.217, and 0.130 for the 20-, 40-, and 60-km zones, respec-
tively. The total netG (TnetG) that affects a specific WQN site was
then calculated as the sum of the distance-weighted netG from all
power plants within 60-km of the WQN site (Eqn. (4)).

TnetGðiÞ¼
Xn

j

�
wdist * netGji

�
(4)

where TnetG is the total distance-weighted netG for a WQN site;
Wdist is the distance weighting factor; netGji is the netG for power
plant j at year i; n is the total number of power plants that affect the
specific WQN site.

2.4.2. Predictions of SO2 emissions and stream SO4
2-

The total SO2 emissions from power plants affecting a WQN site
is calculated from the product of SO2EI (i.e. a value from the
SO2EItrend model) and the total netG (TnetG) from relevant coal-fired
power plants. The predicted relative SO2 emissions for year i
(RSO2pred) can be estimated from the SO2EItrend adjusted by a rela-
tive value of the TnetG at year i to the TnetG at the base year (Eqn. (5)).

RSO2predðiÞ¼ SO2EItrendðiÞ *
TnetG ðiÞ

TnetGðbaseÞ
(5)

where RSO2pred(i) is themodel predicted relative SO2 emission from
a coal-fired power plant at year i; TnetG(i) and TnetG(base) are the
distance-weighted total netG from all relevant power plants (Eqn.
(4)) at year i and at base year (1990), respectively; SO2EItrend(i) is the
SO2EI trend value for year i.

Using the same concept as equation (3), the SO4
2� concentration

relative to the base value, RSO4pred, can be estimated from the
predicted SO2 (i.e. RSO2pred) and an empirical legacy sulfate
adjusting factor as shown in equation (6):
5

RSO4predðiÞ¼RSO2predðiÞ
þ
�
1� RSO2predðiÞ

�
*fsce

(6)

where RSO4pred(i) and RSO2pred(i) are the predicted relative stream
SO4

2� concentrations and SO2 emissions from power plants for year
i, respectively.

2.5. Observed stream SO4
2� (WQN data)

SO4
2� in streams derives from pollution from human activities

(such as SO2 emissions, coal mining, agriculture, etc.) and natural
processes (i.e., geological phenomena). For example, based on Niu
et al. (2018b), some streams in PA that are impacted heavily by
coal mining have elevated SO4

2� because of acid mine drainage. To
keep our work from being biased by those sites, we only considered
WQN sites where the minimum SO4

2� concentration (i.e. min
[SO4

2�]) in the stream is less than a pre-defined threshold value.
Specifically, we only chose the sites thatmeet the following criteria:
min[SO4

2�] < [mean-background-SO4
2- þ 2*StDev]. The mean-

background-SO4
2- and standard deviation (StDev) were adopted

from Niu et al. (2018b) for “pristine” streams. The assumption here
was that if min[SO4

2�] was too high, the stream was likely
contaminated by coal mining or other activities unrelated to power
plant emissions. A total of 69 of the WQN sites that are categorized
as pristine meet both this non-contamination criterion and the
additional criterion of at least 10 years of data.

With data from these sites, we calculated the stream SO4
2�

concentrations (SO4SO2) that are attributable to SO2 emissions by
subtracting background values (SO4bg) from WQN observations
(SO4wqn; as shown in Eqn. A4, Appendix A). We then compared
them to values predicted by themodel. The background values vary
with the type of bedrock and were calculated as mean SO4

2� con-
centrations from “pristine” streams flowing over each bedrock type
(see Fig. B2 in Appendix B; Adapted from Niu et al., 2018b). Stream
SO4

2� concentrations vary seasonally but the observations are not
evenly distributed through the year. To avoid biases in annual mean
calculations as a result of this seasonality, we created weighting
factors for each month (Wj, i.e., annual mean divided by monthly
mean; Eqn. A5, Appendix A), and then calculated the monthly-
weighted annual mean (Eqn. (7)).

SO4obsvðiÞ¼
Pn

j SO4SO2ði; jÞ *Wj

n
(7)

where Wj is the weighting factor for month j; SO4SO2 is the SO2-
induced SO4

2� values calculated from Eqn. A5 at year i and month j;
n is the total months of data available; SO4obsv(i) is the annual mean
SO2-induced SO4

2� at year i.

2.6. Model validations and applications

In this section we extrapolate the SO2EI trend model from PA to
predict SO2 emissions for the 48 contiguous U.S. states and compare
them with the EIA-estimated data. A comparison of root mean
square error (RMSE, Eqn. A2, Appendix A) between predicted and
EIA estimated SO2EI was used to evaluate the model’s overall per-
formance. Predicted stream SO4

2� values were compared with the
selected PAWQN observations as discussed in section 2.5. Since the
WQN data starts at 1998, the mean SO4obsv value for the first three
years (i.e. 1998-2000) was used as the base value for calculations of
relative SO4

2�. All statistical analyses were performed with R.
We then applied the SO2EI and SO4CI trend models to a scenario

analysis for both the entire U.S. and for PA. The scenariowe chose to
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explore was based on the assumption that 30% of the electricity
generated by using coal in 2017 was instead produced by burning
gas (hereafter, 30% coal-to-gas scenario). Under this so-called “30%
coal-to-gas scenario”, we predicted the potentially avoided SO2
emissions nationwide for every state in the U.S. We used this same
calculation in turn to demonstrate the avoided SO4

2� contamina-
tions for streams nearby power plants in PA. We did not complete
this assessment for the entire U.S. because we could not defensibly
use our estimated fste for all geologies nationwide (such an
extrapolation for stream chemistries nationwide must await better
understanding of fste and use of models such as those proposed by
Rice et al. (2014)). We also applied the model for assessment of
effectiveness of emission control technologies to observations
which led to identification of additional pollution sources at
regional levels.

3. Results and discussions

3.1. Range of power plant impact on streams

Our semivariance analysis of the spatial correlation between
SO4

2� concentrations at WQN sites and at coal-fired power plant
sites showed that the range varied from 20.4 to 62.7 km, depending
on the model (Table B1; Appendix B). The variogram models
(Fig. B5; Appendix B) also show that strong spatial autocorrelations
exist within distances less than 20 km (corresponding to the range
of the Gaussian model) and the autocorrelation clearly weakens
after 60 km (corresponding to the range of the spherical and
exponential models). Therefore, we used distances of 20-, 40-, and
60-km in this study to represent intense, moderate, and low impact
zones of power plants. This three-impact-zone concept was
adapted to calculate the overall distance-weighted impacts from
multiple power plants as discussed in section 2.4.1.

These ranges are well aligned with previously published values.
For example, a study of public health benefits in Massachusetts,
U.S., showed that a maximum benefit was found within 25e40 km
of a power plant when its emissions were reduced, while little to no
benefit was observed out to 100 km from the source (Levy and
Spengler 2002). Likewise, H€ogstr€om (1973) used residence time
analysis and found that sulfurous air pollutants from a local source
could travel a distance of 50e100 km. Weber (1970) also found that
almost 50% of the total atmospheric sulfur content could be lost
from air samples in a period of 20minutes to 1 hour. For the average
wind speed of 26.7 km/hour in PA (www.climate.gov), this is
equivalent to distances of 9e27 km (or an average of 18 km).

3.2. Technology trends of SO2 emission intensity and stream SO4
2�

concentration intensity

The results of the SO2EI and SO4CI trends are shown in Fig. 2. The
trend of SO2EI (SO2EItrend) resembles an inverse typical technology
diffusion pattern (e.g. Lotfi et al., 2014): slow decline in the
beginning from innovators and early adopters (roughly
1990e2000), followed by a stage of accelerated decrease with the
majority of adopters (2000e2012), and a mature, late slow down
stage with slow-adapters (after 2013). Similar decline trends were
reported in previous studies with various innovations (Baig and
Yousaf, 2017; Jiang et al., 2018; Massetti et al., 2017; Taylor et al.,
2005). Based on the model, the SO2EI of PA decreased by 84% be-
tween 1990 and 2016, reasonably consistent with the published
estimates of a 71% decrease from 1997 to 2012 (de Gouw et al.,
2014). The U.S. SO2 emissions in 2014 were estimated to have
reached about 73% below those in 1970 (Massetti et al., 2017).

The timing of major U.S. environmental control regulations after
1990 were also plotted in Fig. 2, including the Clean Air Act (CAA)
6

Amendments in 1990, Acid Rain Programs in 1995 (Phase I) and
2000 (Phase II), and the Clean Air Interstate Rule in 2010. Following
the CAA in the 1970s and especially after the CAA Amendments in
1990, numerous new technologies were developed and gradually
adopted by the electric industry to reduce SO2 emissions (Baig and
Yousaf, 2017; Massetti et al., 2017). Among those initiatives, the U.S.
Acid Rain Program is considered one of the most successful: it
reduced more than 70% of power plant generated SO2 emissions
since the 1990s (Massetti et al., 2017). This decrease coincided with
the observed rapid SO2EI decrease in our technology model. The
installation of flue gas desulfurization (FGD) was found to be the
biggest contributor of reductions in SO2 emissions during this time
period (Massetti et al., 2017).

The trend of stream SO4
2� concentration intensity, SO4CItrend (red

dashed line in Fig. 2), shows the same pattern as SO2EItrend, except
that the range of variations was reduced by a factor of 0.49 (i.e., by
the atmosphere-to-stream sulfur transit efficiency factor, fste). This
decreased variation range in stream SO4

2�, when compared with
that of SO2EI, can be at least partially explained by the modulation
caused by sulfur sorption in soils and vegetation and the delayed
release back to surface waters (DeWalle et al., 2016; Rice et al.,
2014; Smith and Alexander 1986).
3.3. Validation of the technology trend models

3.3.1. Validation of the SO2EItrend model
To explore the validity of the technology trend model and its

applicability to other states, we applied the SO2EItrend model (using
Eqn. (5)) to predict the annual SO2 emissions from 1990 to 2016 for
48 U.S. contiguous states. We then compared them with the EIA
estimations. In general, the SO2EItrend model fairly predicted SO2
emissions for 42 out of 48 of the states. The results show that our
predictions significantly correlate with EIA-estimated values as
shown in Fig. 3a (R2 > 0.4 and p-value < 0.0001). One example of
the comparison between EIA-estimates and model-predictions for
the total emissions from the U.S. is shown in Fig. 3b (R2¼ 0.91). This
result not only validates the SO2EItrend model, but also suggests that
it can be applied to calculate SO2 emissions in other states.
3.3.2. Validation of the SO4CItrend model
The SO4CItrend model was also validated against the observed

stream SO4
2� data from the PA water quality network (WQN). One

comparison between model predicted and observed (WQN) stream
SO4

2� is shown in Fig. 4. In this case, the WQN site 21PA-WQX-
WQN0154 (WQN0154) is located in the Valley Creek watershed in
Chester County, PA, where five coal-fired power plants are located
within 60 km (Fig. B6; Appendix B). From 1998 to 2016, some po-
wer plants switched from coal to gas and some were retired (as
indicated by the number of “coal-fired” power plants in Fig. 4). The
model predicted the trend of SO4

2� concentrations with adequate
accuracy (R2 ¼ 0.58 and p-value ¼ 0.00015), reflecting the effect of
the combination of changes in total netG from coal and the adop-
tion of new emission control technologies. The model slightly
under-predicted SO4

2� concentrations after 2008, an effect that
could be related to soil releases or land use changes as discussed in
sections 3.7.2.

The overall decline in stream SO4
2� concentrations for the 69

WQN sites is demonstrated in Fig. 5a and the accuracy is demon-
strated by the histogram of rootmean square error (RMSE) between
predicted and observed values (Fig. 5b). The RMSE values are
almost normally distributed around amean value of 0.09. The slight
positive skew in data show a mean RMSE of 9% that is most likely
related to additional sources of SO4

2� pollution as discussed below.

http://www.climate.gov


Fig. 3. Comparison between EIA-estimated annual SO2 emissions and the technology
trend model predictions. Panel (a) shows the correlations (R2) between the two for
each of the 48 U.S. contiguous states and panel (b) shows a scatter plot for the model
predictions against the EIA-estimated U.S. total annual SO2 emissions from 1990 to
2016. All values are normalized relative to values for 1990.

Fig. 4. Comparison between measured stream SO4
2 concentration (blue squares) and

predictions of the technology trend model (red solid line) at one stream site (WQN
0154 in Chester County, PA). All concentrations are relative to the base value (the
median value of SO4

2 for the first three years starting at 1998). A smoother line (dashed
blue line, plotted using R-Loess smooth function) is also plotted to show the temporal
pattern of the observed relative stream SO4

2� concentrations. Black symbols (X)
represent the net electricity generation (netG) from coal (relative to 1998). The
accompanying labels are numbers of coal-fired power plants (EIA data) that potentially
affect the WQN0154 site at respective years. The numbers change with time as coal-
fired power plants come online or are retired or change fuels. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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3.4. Temporal trend of stream SO4
2� concentrations as power plants

abandon coal

Comparison between observed and model predicted stream
SO4

2� concentrations is consistent with the hypothesis that as po-
wer plants switch from coal to gas, less contaminating SO4

2� reaches
nearby streams. One example of trends of net electric generations
and nearby stream SO4

2� concentrations are shown in Fig. 6a and b,
respectively.

In Fig. 6a, changes in the total amount of netG from both coal
and gas from five power plants near water-sample siteWQN0154 is
shown. The total netG steadily increased to more than 3 times the
1998 level by 2016. However, in comparison to the 1998 level, coal
consumption initially increased until 2008 and then began to
dramatically decrease down to less than 5% by 2016. During the
same time period, natural gas gradually replaced coal as the major
source of fuel at the local power plants. As shown in Fig. 6b, the
initially increasing coal consumption resulted in increasing stream
SO4

2� (the blue solid line), but stream SO4
2� then began to decline

once the power plants switched to dominantly gas. Fig. 6 is a good
example showing why a model is needed to document the small
improvements in stream chemistry that have ensued during the
recent period of adoption of SO2-emission-control technologies
amid changing fuel choices.

In Fig. 6b, a plot of model predicted stream concentrations of
SO4

2� is also shown (black dashed line) from 1998 through 2016 for
7

the same trend of total net power generation but assuming all
electricity were generated by using coal. In that case, SO4

2�

increased over time until 2005 before starting to decline. This
behavior is mainly determined by the competition between the
increasing amount of netG from burning coal (i.e., increasing SO4Cl)
and the adoption of emission control technologies (i.e., lowering
SO4Cl). The difference between modeled and observed SO4

2� (gray
area between the dashed and solid lines in the figure) clearly define
a gap, highlighting the avoided SO4

2� stream contamination. Note
that the gap (i.e. avoided SO4

2� pollution) narrowed over time as the
effects of emission control technologies became increasingly
important with time. The results here clearly show the advantages
of our technologymodel which avoids overestimating the benefit of
the power plant switch from using coal to gas. The gap here
demonstrates the environmental benefits to the stream that
accrued from such coal-to-gas switch.
3.5. Avoided SO2 emissions in the U.S

In 2017, a total of 1.21 billion MWh was generated for electricity
in the U.S. from burning coal (eia.gov). Under the 30% coal-to-gas
scenario, our model predicts that 402.6 thousand tons (k-tons)
SO2 emissions to the atmosphere could have been avoided. This
result is compatible with the value derived from EIA estimations:
based on EIA reporting Form EIA-923, 388.6 k-tons of SO2 emissions
would have been avoided if consumption of coal had been reduced
by 30% in 2017. From state to state, the range of potentially avoided
SO2 emissions in 2017 varies from 0.1 to 46.1 k-tons, with the most
reduction concentrated in the eastern parts of the U.S. as shown in
Fig. 7. For PA, the reduction was predicted to be 20.3 k-tons under
the 30% coal-to-gas scenario.

http://eia.gov


Fig. 5. Panel (a): Overall decreasing trend in stream SO4
2� concentration (relative to

1998) for the mean of 69 sites in PA from the WQN database as described in the text.
Data are shown with both measured (black diamonds with a smoother line using the
Loess function in R) and model predictions (red triangle). Error bars represent ± one
standard deviation. Panel (b): Histogram of values for root mean square error (RMSE)
calculated between model predictions and the observations for the same 69 WQN
sites. The mean of the RMSE for all sites is 0.09 (vertical dashed line in figure 5b). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 6. Panel a): Annual total net electric generation (netG) from coal and natural gas
for power plants within 60 km of a WQN site - WQN0154. Panel b): Comparison be-
tween predicted and measured stream SO4

2� concentrations (relative to 1998) for the
WQN0154 site. The solid-blue and dashed-black lines represent the smoother lines of
the observed and model predicted SO4

2� concentrations (plotted using the Loess
function in R). The model predictions were executed under a scenario that the same
total amount of annual netG were generated by burning coal, instead of using both coal
and gas. The gaps between the smoother lines of the predicted and measured SO4

2�

(gray area) represent the potential avoided SO4
2�contaminations after coal-to-gas

switch of the surrounding power plants. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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3.6. Avoided stream SO4
2� contamination

Under the same 30% coal-to-gas scenario as discussed in section
3.5, our model shows that stream SO4

2� in PA could have been
reduced by as much as 10.4%. This value is much smaller than the
assumed amelioration in SO2 emissions (30%) largely because of the
attenuation factor that documents some SO4

2� held in soils and
vegetation.

To analyze these effects locally, we also conducted a hotspot
analysis using the Getis-Ord Gi* statistic in ArcGIS to identify sta-
tistically significant spatial clusters of hot spots and cold spots
where SO4

2� reductions were significantly larger or lower than the
surroundings, respectively. The results (Fig. 8) suggest that most of
the predicted hot spots are in western PAwhere coal is still a major
source for electricity generation. In effect, if 30% of the energy
derived from coal in 2017 at each power plant was instead pro-
duced by burning gas, this would not have affected eastern PA
significantly because power plants in that areawere already mainly
powered by gas. The implication is that streamwater quality would
8

have improved inwestern PAwith such a switch from coal to gas. In
addition, since glaciated soils release SO4

2� to streams more quickly
than unglaciated soils (Rice et al., 2014), the sites in the north-
western part of the state (especially glaciated soils) would most
quickly show improvements in SO4

2� concentrations in streams as
compared to streams in the southern part of the state (unglaciated
soils) after a 30% switch from coal to gas. However, that effect is not
included in our current model.

Future research should take values such as we just calculated for
emissions nationwide and use those to assess improvements in
stream chemistry. However, as discussed previously, the effects on
streams are attenuated by local soils and vegetation, and this is in
turn a function of climate, land use, and geology. To make such a
calculation nationwide will rely on better estimates of fste and
could, for example, rely on models such as those suggested by Rice
et al. (2014). For these reasons, we make the prediction here only
for PA.



Fig. 7. Statewide potential for avoided SO2 emissions (thousand of tons) from coal-fired power plants in the U.S. in 2017, assuming that 30% of the electricity generated by coal per
state in 2017 had been replaced with energy from natural gas.

Fig. 8. Predicted hot spots for potentially avoided SO4
2� contamination in PA streams.

The calculations were based on an assumption that 30% of the electricity generated by
coal in PA in 2017 was replaced by energy from natural gas. The red dots represent the
hot-spots where reductions are predicted to be significantly larger than surroundings.
The gray dots represents where the changes are not significant. The blue dots repre-
sent where the reductions are significantly lower than surroundings. Percentage values
reflect significance levels for the hot/cold spots. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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3.7. Applications of the technology models

The technology trend of SO2EI discussed in section 3.2 repre-
sents the trend of SO2 emission intensity predicted for a power
plant that “fully” complied with regulations by adopting the most
up-to-date emission control technologies. Any significant discrep-
ancy from the trend indicates one of three scenarios: 1) lack of
successful implementation of emission control technologies, 2)
additional sources of pollution, or 3) additional approaches adop-
ted to reduce SO2 emission. We discuss implications below.
3.7.1. Evaluation of the efficiency of power plants in emission
control

To represent the “ideal” situation where all power companies
9

complied fully with pollution control regulations, we predicted the
SO2EI for all 48 contiguous U.S. states using our SO2EItrend model
and compared it with the SO2EI estimated from EIA reported SO2
emissions (The difference between modeled (“ideal”) and EIA
estimated (“real”) SO2EI in 2017 are shown in Figure B7; Appendix
B). Results show that the majority of states in the east and west
coast meet or exceed the standard in terms of emission control
(here, we used the following criteria: [modeled-SO2EI e observed-
SO2EI] > �0.05). However, some states (shown in blue in Fig. B7) in
the midwest did not show the expected level of reduction. This
indicates either i) full compliance was not achieved, ii) additional
sources began emitting SO2 in the study region during the study
period, or iii) some of the states started with a low base SO2EI level
and showed minimal changes. An example of the case-iii is
Nebraska which was reported to release 3.71 kg-SO2/MWh in 1990
as compared to the U.S. average of 8.96 kg/MWh. It is beyond the
scope of this work to evaluate whether (i), (ii) or (iii) are the best
explanations for the midwestern states, but the example shows
how the trend model could be used to assess the efficiency of
technology adoption at regional levels.

3.7.2. Identification of extra sources of pollution
The discrepancy between modeled and observed stream SO4

2�

values could be related to changes in the release rate of legacy SO4
2�

from soils or vegetation because of changing rainfall or other con-
ditions, or could be an indicator of new sources of pollution in some
areas. For example, in the case of the watershedwhereWQN0154 is
located (Fig. 4), land use includes mixes of forest, agricultural land,
and urban area. Increased urbanization and commerical use in
recent years may have introduced extra emissions from automobile
and industrial facilities (Jiang et al., 2018). This effect may partially
explain why the observed actual SO4

2� concentrations in streams
were higher than the model indicated after year 2008.

Another example of additional sources of SO4
2� to streams is coal

mining (Raymond and Oh 2009). In the western part of PA where
coal mining has been intensive, the observed stream SO4

2� con-
centrations consistently exceeded the modeled values (e.g.
WQN0404, WQN0422, WQN0820, WQN 0870, WQN0861,
WQN0843, see Fig. B8; Appendix B). This discrepancy could be
attributed to the presence of contamination from acid mine
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drainage from mines.

3.8. Model implications and significances

Sulfur dioxide (SO2) emissions are one of the major criteria
pollutants from coal-fired power plants and the effect of such
emissions on ecosystems is a matter of current research (Likens
et al., 2002). For example, such emissions are acidic in nature and
affect ecosystem pH balance deleteriously (Kline et al., 2016; Shao
et al., 2020). In addition, coal burning also emits metals to the at-
mosphere which also are re-deposited in streams and soils. Few
data are available for metal emissions nationwide, but numerous
studies report SO2 emissions from the electric power sector. De-
creases in SO2 emissions in the U.S. are largely attributed to the
adoption of emission control technologies (Massetti et al., 2017;
Mitchell and Likens 2011). However, the pattern of reduction in SO2
emissions has not been quantitatively studied, impeding our ability
to assess regional or country-wide reductions. While assessing
changes in pH or in metal concentrations from decreased emissions
might be a more direct method of analyzing the effect on stream
biota, neutralization reactions and low metal concentrations
obscure such temporal changes making them difficult to analyze. In
this study, therefore, we applied a typical innovation diffusion
(logistic) model to simulate the technology trend of SO2 emissions
from coal-fired power plants in the U.S. and to analyze its effects on
stream sulfate concentrations as a way to assess how changing fuel
choices (coal to gas) might be affecting stream chemistry. Our
development of a technology trend model contrasts with previous
studies where the SO2 emission rate from coal-fired power plants
was assumed from a reference value (e.g. de Gouw et al., 2014;
Lueken et al., 2016). Using such a reference could lead to over-
estimations of the reduction in SO2 emissions when assessing po-
tential benefits of switching from coal to gas. Thus, the technology
trend that we introduced here makes this study more robust in
assessing the “true” benefit in avoided air (SO2) as well as water
(SO4

2�) pollution when power plants switch from coal to gas.
Previous studies have detected correlations between SO2

emissions from power plants and the SO4
2� concentrations in at-

mospheric deposition and in surface water (Mitchell and Likens
2011; Smith and Alexander 1986). Some researchers have
modeled the rate of release of SO4

2� to streams from soils after at-
mospheric deposition (Rice et al., 2014) but our study is the first to
quantify howchanging fuel sources in local power plantsmay affect
streams. To simplify our model of the effect of fuel choices, we
simply treated the relationship between SO2 emissions and stream
SO4

2� concentrations by introducing an empirically-derived legacy
sulfur factor. The sulfur legacy factor is appropriate because it is
known that sulfate accumulates in soils and vegetation and is not
then released until after a time lag. This effect is variable with
respect to climate, lithology, glaciation/lack of glaciation, and
ecosystem conditions. For example, long-term analyses of budgets
of sulfur reveal that the decline in SO4

2� in precipitation resulting
from decreases in SO2 emissions have driven soils in the north-
eastern U.S. from acting as sinks of sulfur to acting as sources of
sulfur (Mitchell and Likens 2011) but southeastern states have
shown slower responses to lowered SO2 emissions (Rice et al.,
2014). By linking the power plant SO2 emissions directly to the
SO4

2� in stream water, our model can be applied directly to assess
the impacts in water quality caused by power plants as they switch
from coal to gas.

Future work could address some assumptions made in this
study. For example, we assumed that the sulfur content in coal is
consistent when developing the technology model, and we also
assumed no directional differences (i.e. wind directions) in power
plant pollutant emission. These factors might be taken into account
10
in future models. Perhaps most importantly, the sulfur-transit ef-
ficiency factor is highly location-dependent and, therefore, could be
adjusted for different areas by usingmodels such as those proposed
by Rice et al. (2014). If this legacy factor were assessed more
broadly, our approach could be used to predict changes in stream
water quality across the U.S. or beyond.

4. Conclusions

As power plants switch from burning coal to gas because of
economic factors, SO2 emissions from the energy industry have
decreased in the U.S. Our results showed that such a coal-to-gas
switch in PA resulted in some reductions of SO4

2� concentrations
in streams nearby power plants. If 30% of the electricity generated
by coal in 2017 in PA had been replaced by energy from natural gas,
our model predicted that the reduction of stream SO4

2� concen-
trations could have been as large as 10.4%. Extrapolating the model
applications to the entire U.S., we found that a similar 30% coal-to-
gas switch could result in a decrease of 0.1e46.1 thousand tons of
total SO2 emissions per state. We did not predict the nationwide
effect on water quality because of lack of knowledge about differ-
ences in how soils and vegetation attenuate the release of SO4

2� to
streams in locations beyond PA. However decreases in SO2 emis-
sions, and in turn in stream SO4

2� nationwide, are likely to benefit
stream ecosystems in that less acidification and metal contamina-
tion would have occurred.

The relatively small improvements in stream water quality are
difficult to detect amid all the temporal changes in power plant fuel
and technology choices, as well as the effect of local soil/vegetation
attenuation and variations in rainfall, etc. Our modeling approach
to detect water quality change is robust because it takes into ac-
count emission-control technology trends. The technology trend
models can be used to assess the ongoing and legacy impacts of
coal-fired power plants on air and water quality. An added benefit
of our models is that they can also be used to assess the effective-
ness of the adoption of emission control technologies and region-
specific benefits of coal-to-gas shifts. Such calculations are critical
for policy evaluation and decision making.

Main findings

A technology trend model successfully predicts the rate of
decrease in SO2 emissions and the reduction of stream water SO4

2�

concentrations as power plants switch from coal to gas.
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