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a b s t r a c t 

Numerous geochemical approaches have been proposed to ascertain if methane concentrations in ground- 

water, [CH 4 ], are anomalous, i.e., migrated from hydrocarbon production wells, rather than derived from 

natural sources. We propose a machine-learning model to consider alkalinity, Ca, Mg, Na, Ba, Fe, Mn, Cl, 

sulfate, TDS, specific conductance, pH, temperature, and turbidity holistically together. The model, an en- 

semble of sub-models targeting one parameter pair per sub-model, was trained with groundwater chem- 

istry from Pennsylvania ( n = 19,086) and a set of 16 analyses from putatively contaminated groundwater. 

For cases where [CH 4 ] ≥ 10 mg/L, salinity- and redox-related parameters sometimes show that CH 4 may 

have moved into the aquifer recently and separately from natural brine migration, i.e., anomalous CH 4 . 

We applied the model to validation and hold-out data for Pennsylvania ( n = 4,786) and groundwater data 

from three other gas-producing states: New York ( n = 203), Texas ( n = 688), and Colorado ( n = 10,258). The 

applications show that 1.4%, 1.3%, 0%, and 0.9% of tested samples in these four states, respectively, have 

high [CH 4 ] and are ≥50% likely to have been impacted by gas migrated from exploited reservoirs. If our 

approach is indeed successful in flagging anomalous CH 4 , we conclude that: i) the frequency of anoma- 

lous CH 4 (# flagged water samples / total samples tested) in the Appalachian Basin is similar in areas 

where gas wells target unconventional as compared to conventional reservoirs, and ii) the frequency of 

anomalous CH 4 in Pennsylvania is higher than in Texas + Colorado. We cannot, however, exclude the pos- 

sibility that differences among regions might be affected by differences in data volumes. Machine learning 

models will become increasingly useful in informing decision-making for shale gas development. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

If natural gas production in the United States (US) doubles 

rom 20 0 0 to 2050 as expected, shale gas production will ac- 

ount for more than three-quarters of this natural gas produc- 

ion ( U.S. Energy Information Administration, 2018 ). This devel- 

pment is largely driven by the combined usage of high-volume 

ydraulic fracturing and horizontal drilling ( U.S. Energy Informa- 

ion Administration, 2018 ). Other countries and regions (e.g., China, 

anada, Middle East) are also ramping up their natural gas produc- 

ion from newly discovered technically recoverable shale reserves 

 U.S. Energy Information Administration, 2017 ). In the meantime, 

utative incidents of deterioration of water quality caused by 

hale gas development have been investigated throughout the 
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S ( Brantley et al., 2014 ; Darrah et al., 2014 ; Guo et al., 2014 ;

icot and Scanlon, 2012 ; Vidic et al., 2013 ; Wen et al., 2019b ,

019 a; Woda et al., 2018 ; Yang et al., 2013 ), where it is not rare

o see that hydrocarbon wells show signs of compromised well in- 

egrity ( Lackey et al., 2021 ). Proving that contamination was caused 

y shale gas development activities is always difficult, and estimat- 

ng the frequency of problems is even more problematic. However, 

or the public to make decisions about granting social license for 

hale gas development requires some information about the fre- 

uency of problems. In this paper we explore the use of a machine 

earning model developed with large groundwater datasets from 

ne region to see if such data-driven models can be used in other 

egions to assess incidents of contamination. 

We developed the model by application to data from Pennsyl- 

ania (PA), the state in the US with the longest history of con- 

entional oil/gas (OG) drilling and coal mining. PA has become 

 leading area for shale gas production through use of horizon- 

https://doi.org/10.1016/j.watres.2021.117236
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2021.117236&domain=pdf
mailto:twen08@syr.edu
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al drilling and high-volume hydraulic fracturing to extract gas 

nd liquids from the Marcellus and Utica shales. The contaminant 

hat has been identified as the most common problem in PA is 

ethane (CH 4 ), the chief component of natural gas ( Brantley et al., 

014 ). Many studies investigating groundwater quality in shale gas 

asins have focused on contamination by such anomalous CH 4 

 Hammond, 2016 ; Hammond et al., 2020 ; Li and Carlson, 2014 ;

olofsky et al., 2013 ; Nicot et al., 2017c ; Osborn et al., 2011 ;

herwood et al., 2016 ; Siegel et al., 2015a,b, 2016; Smith et al., 

016 ; Wen et al., 2017 , 2016 ). Here ‘anomalous CH 4 ’ is used to de-

ote dissolved or free-phase CH 4 found in groundwater that is pu- 

atively derived from the effects of recent human activities related 

o shale gas development. In general, naturally occurring CH 4 may 

ave long affected an aquifer whereas anomalous CH 4 represents a 

elatively new source at the impacted site. 

The identification of new (anomalous) CH 4 is difficult at least 

artly because naturally occurring CH 4 is common in many basins, 

ncluding in PA groundwater ( Baldassare et al., 2014 ; Siegel et al., 

015b ; Wen et al., 2019b ). In a limited number of areas, the causes

f elevated CH 4 in groundwater have been attributed to OG pro- 

uction activities (conventional or unconventional) ( Darrah et al., 

014 ; Grieve et al., 2018 ; Hammond, 2016 ; Hammond et al., 2020 ;

ackson et al., 2013 ; Osborn et al., 2011 ; U.S. Environmental Pro- 

ection Agency, 2015 ; Warner et al., 2012 ; Wen et al., 2019b ;

oda et al., 2018 ). Identification of anomalous versus natural CH 4 

n groundwater often relies on measurement of carbon isotopes 

n the gas (e.g., Baldassare et al., 2014 ; Jackson et al., 2013 ), but

his is somewhat expensive and seldomly definitive. Researchers 

ave also sometimes used other hydrogeochemical patterns to 

dentify anomalous CH 4 . For example, the migration of natural 

H 4 from deeper formations into shallow groundwater in the Ap- 

alachian Basin is often accompanied by salt-containing waters, 

hich leads to slightly elevated salt contents in the shallow aquifer 

nd distinctive chemical signatures ( Siegel et al., 2015a , 2015 b; 

arner et al., 2012 ; Wen et al., 2019b ). Therefore, major and 

race elements (e.g., calcium, sodium, and bromide) ( Brantley et al., 

014 ; Cantlay et al., 2020b ; Grieve et al., 2018 ; Lu et al., 2015 ;

cMahon et al., 2017b ; Schout et al., 2018 ; Warner et al., 2012 ;

en et al., 2019b ; Woda et al., 2018 ) have been proposed to dis-

inguish varying sources of subsurface fluids. In addition, electron 

cceptors can be reduced (e.g., SO 4 can be reduced to sulfide) by 

acteria that use CH 4 as an electron donor ( McMahon et al., 2017b ;

chout et al., 2018 ; Van Stempvoort et al., 2005 ; Woda et al., 2018 ).

he concentration of sulfate in waters has sometimes been used to 

etect anomalous CH 4 as it is easier to collect and analyze water 

amples for sulfate than sulfide. Other tracers were also proposed 

ecently to detect anomalous CH 4 in groundwater, e.g., strontium 

sotopes ( Warner et al., 2012 ; Woda et al., 2018 ), lithium and boron

sotopes ( Warner et al., 2014 ), and noble gas isotopes ( Darrah et al.,

015 , 2014 ; Wen et al., 2017 , 2016 ; Woda et al., 2018 ). These lat-

er isotopic tools require a high level of expert knowledge and ad- 

anced (and expensive) analytical facilities to ensure proper data 

cquisition and interpretation. Such characteristics so far have pre- 

ented these tracers from being applied widely for monitoring of 

aseline water quality in the area of shale gas production. 

Among these hydrogeochemical tracers, no single parame- 

er is characteristic of a particular source for anomalous CH 4 

 Cantlay et al., 2020b ). In past studies determining the attribution 

f anomalous CH 4 , bivariate plots were often used, in which the 

ariables are generally concentrations of hydrogeochemical param- 

ters (e.g., chloride) and/or concentration ratios (e.g., Ca/Na). No 

ingle bivariate plot has been suggested that provides definitive an- 

wers about whether anomalous CH 4 is present. Instead, the source 

f elevated CH 4 is more likely to be identified through a combina- 

ion of parallel bivariate plots ( Cantlay et al., 2020b ; Wen et al.,

019b ; Woda et al., 2018 ) 
2 
We wanted to test machine learning approaches to identify- 

ng anomalous CH 4 in multiple shale gas plays. Logistic Regression 

LR), introduced in the late 1980s ( McCullagh and Nelder, 1989 ), is 

 type of machine learning algorithm used to make dichotomous 

rediction (e.g., whether the dissolved CH 4 concentration is higher 

r lower than a threshold value). LR has been used in environmen- 

al science to predict the presence of certain redox-sensitive con- 

aminants in groundwater, e.g., arsenic ( Ayotte et al., 2016 ), nitrate 

 Nolan et al., 2002 ), and the redox state ( Tesoriero et al., 2015 ).

R was also used to predict the probability of CH 4 occurrence in 

quifers in Alberta (Canada) ( Humez et al., 2019 ). In these studies, 

 LR model was built based on a few selected categorical or con- 

inuous variables. No interactions between variables were explicitly 

onsidered. For example, Humez et al. (2019) used sulfate and total 

issolved solids as input variables to predict the presence of CH 4 , 

ut no concentration ratios of these variables were ever explicitly 

onsidered. Recognizing that the concentrations of chemical con- 

tituents in groundwater are prone to differences in the baseline 

ffects of local geology, topography, and hydrology, we suspected 

hat the exclusion of concentration ratio variables in these previ- 

usly used models largely hampered investigators’ ability to gen- 

ralize the models and findings to other areas. In addition, in the 

bove-mentioned studies, all variables were fed into a single LR 

odel to generate the final dichotomous prediction, and this made 

t difficult to completely understand how each variable contributed 

o the prediction. 

In this study, we developed an ensemble LR model trained with 

ata ( Shale Network, 2015 ) from the northern Appalachian Basin 

n PA. Each sub-model focusses on a pair of hydrogeochemical pa- 

ameters. More complex classifiers like Random Forest or XGBoost 

 Chen and Guestrin, 2016 ) were not used because their outputs are 

arder to explicitly interpret and visualize. We considered predic- 

or features themselves and their interactions. We then explored 

se of the refined ensemble model on additional hold-out hydro- 

eochemistry data from PA and other data from New York, Texas, 

nd Colorado ( Fig. 1 ). To the best of our knowledge, this study is

he first to apply an ensemble LR model to predict whether CH 4 

n groundwater is anomalous or natural. With the improved avail- 

bility of hydrogeochemistry data, such a prediction model could 

e potentially beneficial for other areas in the US and even for 

ther countries/regions with existing or planned OG production. 

lthough we do not have definitive evidence for which groundwa- 

er sample(s) in each basin are affected by anomalous methane, we 

alidated the model against a dataset of 13 sites with high [CH 4 ] 

resumed to be caused by gas development activity and 1 site with 

igh [CH 4 ] thought to be unaffected by anthropogenic activities. 

e also explored the model by testing it against the following hy- 

otheses we derived from the literature: i) the frequency of de- 

ection of anomalous methane (# impacted water samples / total 

ater samples tested) in the Appalachian Basin is greater where 

as wells target unconventional as compared to conventional reser- 

oirs ( Brantley et al., 2014 ; Ingraffea et al., 2014 ), and ii) the fre-

uency of detection of anomalous methane in groundwater in the 

arcellus/Utica shale play is higher than in western shale plays 

uch as those in Texas and Colorado (e.g., Brantley et al., 2014 ; 

ammond et al., 2020 ; McMahon et al., 2017a ; Sherwood et al., 

016 ; Woda et al., 2018 ). 

. Methods and materials 

.1. Groundwater quality data used in model development and 

pplication 

We collated groundwater chemistry analyses from basins that 

ontain some of the largest shale plays in the U.S. and that also 

re associated with large groundwater datasets: the Appalachian 
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Fig. 1. Location of groundwater quality data used in the model development and application in this study. This map layer of basins producing shale gas is adapted from the 

map of U.S. Energy Information Administration ( https://www.eia.gov/maps/maps.htm ). 

Table 1 

Overview of the datasets for model development, validation, and application 

Dataset N 1 
a N 2 

b N 2 /N 1 N 3 
c N 3 /N 2 N 4 

d N 4 /N 1 

Model Development 

Shale Network - training 19086 11875 62.22% 258 2.17% 390 2.04% 

Known problematic sites - training 16 16 100% 16 100% 16 100% 

Model Validation 

Known problematic sites 13 13 100% 13 100% 13 100% 

Model Application 

Shale Network - hold-out 4772 2969 62.22% 64 2.16% 98 2.05% 

New York 203 78 38.42% 5 6.41% 7 3.45% 

Colorado 10258 457 4.46% 58 12.69% 756 7.37% 

Texas 688 338 49.13% 34 10.06% 40 5.81% 

a N 1 refers to the number of groundwater samples with reported values for at least one predictor feature 
b N 2 refers to the number of groundwater samples with reported values for all predictor features 
c N 3 refers to the number of groundwater samples with methane concentration at least 10 mg/L and also 

meet the definition of N 2 
d N 4 refers to the number of groundwater samples with methane concentration at least 10 mg/L regard- 

less of whether they had all the analytes 
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asin within Pennsylvania ( n = 23,858; Shale Network, 2015 ); the 

ort Worth, TX-LA-MS Salt, and Western Gulf basins within Texas 

 n = 688; Darvari et al., 2017 ; Nicot et al., 2017a , 2017 b, 2017 c); and

he Denver-Julesburg, Raton, San Juan, Paradox, Uinta-Piceance, 

reater Green, and North Park basins within Colorado ( n = 10,258; 

ttps://cogcc.state.co.us/ ). We decided not to include some shale 

lays such as the Fayetteville shale in Arkansas in our study be- 

ause 1) that play has shown little evidence for gas migration 

 McMahon et al., 2017a ; Warner et al., 2013 ); 2) we were unaware

f a large dataset of groundwater chemistry for analysis; and 3) 

his region is not one of the major shale gas production areas. The 

amples we analyzed were compiled from a variety of data sources 

 Fig. 1 ; Table 1 ). A relatively small dataset of groundwater quality

n the counties of New York ( n = 203; Christian et al., 2016 ) that

eighbor Pennsylvania was also tested for comparison because it 

epresents a region of long-standing exploitation of conventional 

ut not unconventional hydrocarbon reservoirs. More detailed de- 

criptions of these datasets and sources are included in the sup- 
3 
orting information. All datasets discussed in this study will be re- 

eased at: https://doi.org/10.26208/qs4c-ks39. 

We trained the model to a set of 19,102 groundwater sam- 

le analyses that included a small set of groundwater quality data 

ompiled from sites that are presumed to have been impacted by 

nomalous CH 4 . We then used an additional subset of analyses 

rom such putatively contaminated samples to validate the model 

erformance. Samples are referred to here as putatively contami- 

ated when they were reported to be contaminated in published 

ournal articles or government reports based on field and labora- 

ory investigations ( Llewellyn et al., 2015 ; U.S. Environmental Pro- 

ection Agency, 2015 ; Wen et al., 2019b ; Woda et al., 2018 ). These

ata were divided into a set for training ( n = 16) [from Granville 

oad and Paradise Road (Bradford Co.), and Gregs Run (Lycoming 

o.)] and a set for validation ( n = 13) [from Paradise Road (Brad- 

ord Co.) and Sugar Run (Lycoming Co.)]. An additional sample of 

 well-known brine spring that is naturally CH 4 -rich from north- 

rn PA was also used as part of the validation dataset. Sites were 

https://www.eia.gov/maps/maps.htm
https://cogcc.state.co.us/
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Table 2 

List of geochemical features used in machine learning models to predict methane concentration in groundwater. 

Water quality parameter Single geochemical feature (Y/N) Reciprocal feature (Y/N) Ratio feature (Y/N) 

Bicarbonate Alkalinity Alk Y Y Y 

Calcium Ca Y Y Y 

Chloride Cl Y Y Y 

Magnesium Mg Y Y Y 

Sodium Na Y Y Y 

Sulfate SO4 Y Y Y 

Total Dissolved Solids TDS Y Y Y 

Barium Ba Y Y Y 

Iron Fe Y Y Y 

Manganese Mn Y Y Y 

pH pH Y N N 

Hydrogen Ion a H Y Y N 

Specific Conductance SC Y Y N 

Temperature T Y N N 

Turbidity Turbidity Y Y N 

a H 

+ concentration is calculated from pH 
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Table 3 

Predicted likelihood of groundwater samples being impacted by anomalous 

methane for four scenarios: (1) top 100, (2) top 200, (3) top 500, and (4) top 10 0 0 

sub-models. 

Dataset Likelihood Top 100 Top 200 Top 500 Top 10 0 0 

Model Validation 

Known 

prob- 

lem- 

atic 

sites 

(n = 13) 

0%–20% 0 0 0 0 

20%–40% 0 0 0 0 

40%–60% 0 0 0 0 

60%–80% 0 0 0 0 

80%–100% 13 13 13 13 

Model Application 

Shale 

Net- 

work 

- 

hold- 

out 

(n = 64) 

0%–20% 34 34 29 5 

20%–40% 5 3 4 26 

40%–60% 10 14 9 6 

60%–80% 6 0 9 14 

80%–100% 9 13 13 13 

Texas 

(n = 34) 

0%–20% 22 34 17 4 

20%–40% 12 0 17 17 

40%–60% 0 0 0 13 

60%–80% 0 0 0 0 

80%–100% 0 0 0 0 

Colorado 

(n = 58) 

0%–20% 38 57 21 2 

20%–40% 20 1 36 13 

40%–60% 0 0 1 43 

60%–80% 0 0 0 0 

80%–100% 0 0 0 0 

New 

York 

(n = 5) 

0%–20% 4 4 3 2 

20%–40% 0 0 1 2 

40%–60% 1 1 0 0 

60%–80% 0 0 1 1 a 

80%–100% 0 0 0 0 

a Refer to the text for details. No oil or gas wells found within 5 km of this sam- 

ple. 
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argely determined to be putatively contaminated based on tempo- 

al changes in methane concentration, carbon isotope data in col- 

ected water samples, and geological investigations. 

. 2. Predictor features used in the model 

We strove to develop a machine learning-based ensemble 

odel that could use geochemical analyses to quantify the likeli- 

ood that a groundwater sample with high dissolved CH 4 had been 

mpacted by anomalous rather than natural CH 4 . A total of 118 geo- 

hemical parameters were considered as potential “predictor fea- 

ures” in the model. In other words, these features were tested for 

heir ability to predict if CH 4 in a given sample was anomalous or 

atural. These predictor features are divided into three main sub- 

ategories as discussed in the next paragraphs. Detailed descrip- 

ions of these predictor features can also be found in the support- 

ng information. 

Data for many of the concentrations were beneath detection 

i.e., censored). For example, many of the CH 4 concentrations 

31.1%) were censored (i.e., below reporting limits). To maximize 

he number of measurements for each feature, we chose the fifteen 

eochemical parameters for which the percent of non-censored 

easurements was ≥31.1%. These 15 features are referred to as 

Single Geochemical Features’ or ‘SGF’ in Table 2 . These 15 wa- 

er quality parameters were reported in the training data from PA 

 Shale Network, 2015 ) with over 10,0 0 0 measurements each (Bi- 

arbonate Alkalinity – Alk, Calcium – Ca, Chloride – Cl, Magnesium 

Mg, Sodium – Na, Sulfate or SO 4 
2 − – SO4, Total Dissolved Solids 

TDS, Barium – Ba, Iron – Fe, Manganese – Mn, pH, Hydrogen Ion 

H, Specific Conductance – SC, Temperature – Temp, and Turbid- 

ty). Specific conductance of a water solution is a measure of its 

bility to conduct electricity. Turbidity is a measure of the degree 

o which the water solution has lost transparency due to the pres- 

nce of suspended particulates. pH was considered in addition to 

ydrogen ion concentration because pH, the more commonly re- 

orted term, is a calculated parameter [pH = -log (hydrogen ion 

oncentration)] that is not directly comparable to the other con- 

entrations. 

The second and third sub-categories of predictor features are 

he reciprocals of the concentrations of all the SGF except for pH 

nd water temperature ( n = 13; ‘Reciprocal Feature’), and the ra- 

ios of any two SGF (‘Ratio Features’). Ratio features were cal- 

ulated for all features except for pH, H 

+ , SC, water tempera- 

ure, turbidity ( n = 90). The inclusion of features in the second and

hird categories was motivated by the observation that these two 

ypes of arithmetic combinations of geochemical parameters have 

een widely used by geoscientists in tracing the source of solutes 
4 
n groundwater because they can represent stoichiometric coef- 

cients in the governing geochemical reactions (e.g., Bau et al., 

004 ; Brantley et al., 2014 ; Cantlay et al., 2020c , 2020 b; 2020 c;

isherman and Bain, 2019 ). Furthermore, we reasoned that the sto- 

chiometries of these geochemical reactions need not be restricted 

o one hydrocarbon basin alone, and thus might be more predic- 

ive across basins. Subtraction and multiplication of SGF were not 

onsidered because, unlike ratios, there are no known fundamental 

easons why such functions should be predictive. 

A machine learning model using only geochemical predictor 

eatures allows us to focus on assessing the interplay of geochem- 

cal parameters as well as their relative importance in determin- 

ng whether the elevated [CH 4 ] present in groundwater samples is 

ikely to represent anomalous CH 4 . Therefore, no non-geochemical 

eatures (e.g., land use and bedrock geology) were considered in 

his study. 
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Fig. 2. Workflow of development, validation, and application phases of the ensemble model proposed in this study. 
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.3. Machine learning-based ensemble model 

Our workflow included three sequential phases: ensemble 

odel development (which included training), validation, and ap- 

lication ( Fig. 2 ). Taking two parameters from the 118 parameters 

t a time without repetition yields a total number of 6,903 pair 

ombinations. We started with these 6,903 possible geochemical 

airs that were each tested in a sub-model. The process of model 

evelopment described in the next paragraphs identified the sub- 

et of 6,903 predictor pairs that were most successful in deter- 

ining the likelihood of a groundwater sample being impacted by 

nomalous CH 4 . The likelihood was calculated as the ratio of the 

umber of sub-models flagging the CH 4 as not being naturally de- 

ived (and therefore, putatively, “anomalous”) divided by the total 

umber of sub-models considered. The collection of sub-models is 

ermed here the ensemble model. 

At the stage of ensemble model development (green in Fig. 2 ), 

ub-models using the full list of 118 geochemical features paired 

nto 6,903 predictors were trained with 19,102 analyses referred 

o as training data ( Table 1 ; Fig. 2 ). Each of the 6,903 sub-models

 Fig. 2 ) considers only one pair of predictor features. In effect, 

ach sub-model imitates the traditional procedure of using bi- 

ariate plots of geochemical variables to investigate the origin of 

issolved CH 4 in groundwater [see, for example, Figure S10 in 

oda et al. (2018) ]. The performance of each sub-model was eval- 

ated with respect to two tasks. First, it was evaluated for its abil- 

ty to predict whether the [CH 4 ] is above or below the threshold 

dentified as potentially problematic, 10 mg/L, in the 19,086 water 

amples (Task 1). Given that these samples were collected by pro- 

essional consultants working for gas companies before drilling gas 

ells within a few kilometers of the water wells, the waters could 

e contaminated or uncontaminated by CH 4 from previous oil/gas 

ctivity, but we have no outside evidence of contamination. We hy- 

othesized that successful sub-models would predict [CH 4 ] < 10 

g/L for samples reported to have [CH 4 ] ≥10 mg/L. We inferred 

hese samples are impacted by anomalous CH 4 . This approach is 

mplicitly built on the assumption that natural high-[CH 4 ] waters 

re chemically distinct from anomalous high-[CH 4 ] waters. How- 

ver, we acknowledge that our method will not detect anomalous 

ethane in waters with very low values of [CH 4 ]. In Task 2, each

ub-model was additionally evaluated to see if it successfully iden- 

ified the CH in 16 of the putatively contaminated training sam- 
4 p

5 
les as anomalous (Task 2). The concentration of 10 mg/L was se- 

ected because it is a threshold above which immediate action is 

eeded ( Eltschlager et al., 2001 ; Wen et al., 2019b ). 

During ensemble model development (green in Fig. 2 ), a linear 

lassifier – logistic regression (LR) – is used in the two tasks with 

-fold cross-validation. LR is generally used to solve binary classifi- 

ation problems. With LR, the relationship between predictor fea- 

ures and the prediction outcome can be described by a sigmoidal 

unction as illustrated by Equation (1) in which x represents pre- 

ictor features and y is the binary model output of 0 ([CH 4 ] < 10

g/L) or 1 ([CH 4 ] ≥ 10 mg/L). 

 = 

e wx + b 

1 + e wx + b (1) 

In the training, the sub-model allows optimization of w and b 

o best predict the training data. Once w and b are optimized, each 

ub-model can be used in Task 1 to predict which groundwater 

amples are characterized by [CH 4 ] ≥ 10 mg/L. For this task, Area 

nder the Curve (AUC) is considered as the performance metric 

here a higher AUC value indicates higher accuracy of prediction. 

UC, in particular, was chosen as the accuracy measure as it holis- 

ically evaluates the model performance in predicting both positive 

i.e., high methane sample) and negative (i.e., low methane sam- 

le) results. 

In Task 2 the sub-model was applied to 16 putatively contam- 

nated samples. F1 score was calculated following Equation (2) as 

he performance metric: 

 1 score = 

2 

recal l −1 + precisio n 

−1 
(2) 

Here recall is defined as the proportion of the 16 samples 

dentified correctly while precision is the proportion of predicted 

nomalous CH 4 samples that are actually contaminated. F1 score 

as chosen to prioritize maximizing true positives (i.e., known 

roblematic samples correctly identified) as it does not consider 

rue negatives (i.e., known natural samples correctly identified). 

Both Tasks 1 and 2 were used to identify the best sub-model 

o detect anomalous CH 4 in impacted waters. Samples reported to 

ave high [CH 4 ] that were incorrectly classified as low [CH 4 ] sam- 

les by sub-models in Task 1 were inferred to have been impacted 

y anomalous CH 4 . We chose sub-models with higher accuracy of 

rediction in Task 1 to yield a lower number of false positives. To 
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valuate the performance of each sub-model for both Tasks 1 and 

, we defined a synthesized metric, namely, 0.7 x F1 score + 0.3 

 AUC. The selection of coefficients 0.7 and 0.3 is not entirely ar- 

itrary. We assigned the higher weight (0.7) to F1 as that task is 

ore critical. All sub-models (and the associated pair of features; 

 = 6,903) were ranked by the final synthesized score. We also com- 

leted a sensitivity test of the coefficients (Table S1a and S1b) and 

etermined that feature members in the top feature list (e.g., top 

0) are mostly unchanged (e.g., SC, Na, Cl/SO4), although the exact 

ank of features by frequency changes to a limited extent. 

In the phases of model validation and application, the predic- 

ion results for the best performing sub-models were used to esti- 

ate the likelihood of impact of groundwater samples by anoma- 

ous CH 4 ( Fig. 2 ). This likelihood was defined as the percentage of

onsidered sub-models that classified the sample as impacted by 

nomalous CH 4 . We calculated four types of likelihood for each 

ater sample using the best n sub-models where we explored 

 = 10 0, 20 0, 50 0 as well as 1,0 0 0. We ultimately chose n = 1,0 0 0

o be conservative. The selection of n = 1,0 0 0 is supported by the

bservation that (1) an ensemble model with fewer sub-models 

ould be more likely to be biased towards a few geochemical pa- 

ameters (e.g., the ensemble model for n = 100 was observed to 

e highly biased towards SC as discussed in the text below) and 

2) an ensemble model with a larger number of sub-models (e.g., 

 = 1,0 0 0) was expected to assess water chemistry more holis- 

ically, improving model applicability and performance for new 

atasets with less likelihood of overfitting. 

In this study, the ensemble model was trained and validated 

ith hydrogeochemistry data in Pennsylvania (i.e., Marcellus shale) 

nd then was tested in other natural gas production regions in 

olorado, Texas, and New York. Differences in bedrock geology, re- 

ional hydrogeochemistry, topography, and land use between test- 

ng and training/validation datasets might in some cases hamper 

he applicability of the developed ensemble model. We strove to 

inimize this issue by considering interactions of ratios of concen- 

rations of single geochemical features as these concentration ra- 

ios tend to yield less variability across different regions. As more 

ydrogeochemical data become available, in particular from pre- 

umably contaminated sites, the ensemble model can be further 

alidated and even re-trained with new data. 

. Results and discussion 

.1. Model development 

Two statistical methods – Pearson correlation and Spearman’s 

ank correlation – were adopted to assess the pairwise correla- 

ion of the 15 single geochemical features in predicting the tar- 

et feature, [CH 4 ]. The Pearson correlation is used to evaluate lin- 

ar relationships between continuous variables that are assumed 

o obey normal distributions, while the Spearman’s rank correla- 

ion is used to evaluate monotonic relationships between two con- 

inuous variables without the requirement that variables are nor- 

ally distributed. Therefore, the Spearman’s rank correlation iden- 

ifies more pairs of features that report statistically significant cor- 

elations ( p < 0.05) compared to the Pearson correlation ( Fig. 3 ). 

The pairwise correlations led us to note three groups for the 

fteen single geochemical features: 1) salinity-related (Alk, Ba, Ca, 

l, Mg, Na, TDS, SC); (2) redox-sensitive (Fe, Mn, and SO4); and (3) 

thers (pH, Temp, Turbidity, and H 

+ ). These groupings are used to 

ategorize the best-performing sub-models in subsequent discus- 

ions. 

.1.1. General observations 

The synthesized scores of all sub-models ( n = 6,903) are listed 

nd ranked in Table S1a. The best performing sub-model (synthe- 
6 
ized score = 0.9579, F1 = 0.9677, AUC = 0.9350) corresponds 

o the pair, 1/SC and Ca/Ba (Table S1a). From this observation 

e inferred that salinity is an effective tool to detect anomalous 

H 4 samples (SC, Ca, and Ba are all salinity-related features). Pre- 

ious studies (e.g., Brantley et al., 2014 ; Cantlay et al., 2020b ; 

isherman and Bain, 2019 ; Wen et al., 2019b ; Woda et al., 2020 ,

018 ) have also identified other salinity-related parameters (Cl, 

a/Na, Mg/Na, Ca/Mg, and Ba/Cl) that are helpful in detecting 

nomalous CH 4 in groundwater samples or distinguishing chem- 

cal signatures of produced waters from shale gas development 

rom other types of contamination. These same parameters, i.e., Cl, 

a/Na, Mg/Na, Ca/Mg, and Ba/Cl, show up in sub-models ranked 

s high as 8 th , 13 th , 19 th , 82 nd , and 191 st (Table S1a), respectively.

urthermore, the frequency of inclusion of these features in the top 

0 0 0 sub-models are 87, 4, 2, 11, and 8, respectively (Table S1b and

ig. 4 ). In addition to the salinity-related parameters mentioned 

y previous authors, a few new ones were identified as important 

i.e., high frequency) in the top 1,0 0 0 performance sub-models, 

.g., Ca/TDS (49) and Ba/Alk (81) (Table S1b). These salinity-related 

eatures can effectively distinguish natural migration of thermo- 

enic CH 4 from anomalous CH 4 presumably because CH 4 often mi- 

rates naturally with salt-containing Appalachian Basin brine into 

hallow groundwater (e.g., Warner et al., 2012 ; Wen et al., 2019b ; 

oda et al., 2018 ). Alkalinity may appear because it increases dur- 

ng sulfate reduction, one of the redox processes (see next para- 

raph) that sometimes couple to methane oxidation ( Woda et al., 

018 ). 

In addition to salinity, redox-sensitive features (e.g., Fe/SO4, 

O4/Na) are also frequently found in the top performing sub- 

odels (Table S1, and Fig. 4 ). For example, SO4 and Fe concen- 

rations have previously been used to detect anomalous CH 4 in 

roundwater ( Wen et al., 2019b ; Woda et al., 2020 , 2018 ) and

he frequency of SO4-containing and Fe-containing features (e.g., 

e/SO4) appearing in the top 100 sub-models are 17 and 10, re- 

pectively. It is worth noting that many SO4- or Fe-containing fea- 

ures also incorporate salinity-related features, e.g., SO4/Na and 

e/Ba. Redox features are expected because the presence of CH 4 

reates an anoxic environment that in turn promotes reduction 

f redox-sensitive species such as sulfate (SO 4 
2 −) to sulfide (S 2 −) 

nd Fe(III) to Fe(II). The formation of sulfide leads to precipita- 

ion of metal sulfide and a decrease in SO4 and Fe concentrations 

ver time ( Woda et al., 2020 , 2018 ). Low concentrations of all of

hese redox-sensitive parameters are expected when the source of 

H 4 is natural and the groundwater has had a relatively long time 

o reach thermodynamic equilibrium. In contrast, when anoma- 

ous CH 4 migrates into shallow, oxygenated groundwater, months 

an pass before the water reaches chemical equilibrium, allowing 

he co-existence of transiently high methane, sulfate, and iron in 

he same water samples that can be detected during the transient 

 Wen et al., 2019b ; Woda et al., 2020 , 2018 ). 

.1.2. Specific observations 

Best performing features are summarized for the top 10 0, 20 0, 

0 0, and 1,0 0 0 models in Fig. 4 and the likelihood of the presence

f anomalous CH 4 in groundwater is calculated for all of these four 

op lists in the following sections. It is clear that in the first two 

ists (i.e., top 10 0, 20 0), the frequency of SC-containing features (SC 

nd 1/SC) dominate over the other top features. So, if the likeli- 

ood of groundwater samples being impacted by anomalous CH 4 

s calculated from an ensemble model considering only the top 

00 (or 200) features, the calculated likelihood will be largely bi- 

sed towards SC. Two more features (Na and Cl) are reported with 

igh frequency in the top 500 list, but the calculated likelihood of 

roundwater samples being impacted by anomalous CH 4 still de- 

ends strongly on the salinity features SC, Na, and Cl. To holisti- 

ally assess groundwater chemistry and to be more conservative, 
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Fig. 3. Correlation matrices for the 15 single geochemical features and the target feature (i.e., CH 4 ) determined for the training data derived from the Shale Network database 

( n = 11,875; Table 1) for: (A) Pearson correlation and (B) Spearman’s rank correlation. The pairwise correlation coefficient is indicated in the corresponding cell. A statistically 

significant correlation is highlighted by either blue (positive) or red (negative) colors. 

Fig. 4. Frequency of the top 20 features in the best-performing models with respect to both the categorization of methane concentration and the detection of putatively 

contaminated samples in the model development. Feature frequency is shown for (A) top 100 models; (B) top 200 models; (C) top 500 models; and (D) top 1,000 models. 

The y-axis summarizes the frequency of each feature. 

w

b

3

d  

a

s

[

i

2

>

b

g

r

i

u

i

o

T

i

s

b

s

[

o

3

v

a

a

p

(  

2

3

d

o

a

a  

t

s

b

w

m

B

a

w

t

l

e focus the most extensive discussion mainly about the results 

ased on the list for the top 1,0 0 0 (the “top 1,0 0 0 model”, Fig. 4 ). 

.2. Model validation 

After training with the use of putatively contaminated sample 

ata ( n = 16), the top 1,0 0 0 sub-models were validated against

nother groundwater quality dataset of 14 high-[CH 4 ] groundwater 

amples from northeastern or central PA. All were reported with 

CH 4 ] ≥10 mg/L. Of these, 13 were reported for 4 sites putatively 

mpacted by anomalous CH 4 ( Llewellyn et al., 2015 ; Wen et al., 

019b ; Woda et al., 2018 ). The likelihood of contamination was 

 90% for each of these 13 validation samples (Tables 3 and S2) 

y the ensemble model using the top 1,0 0 0 sub-models. This sug- 

ests that the ensemble model has high sensitivity (i.e., high recall 

ate), i.e., the model is very effective in detecting anomalous CH 4 

n groundwater samples (true positives). The 14 th sample that we 

sed for validation was groundwater from Salt Spring State Park 

n northern PA. That spring sample is known to contain naturally 

ccurring CH 4 with [CH 4 ] > 10 mg/L (‘Salt Spring State Park’ in 

able S2). The predicted likelihood that this groundwater sample 

s impacted by anomalous CH 4 is 14%, which means that the en- 

emble model predicts that this sample is likely not contaminated 

y anomalous CH 4 (i.e., a true negative). Thus, the proposed en- 

emble model is also very effective in distinguishing whether high 

CH 4 ] in groundwater is naturally occurring (e.g., < 20% likelihood) 

r anomalous (e.g., > 90% likelihood). 
7 
.3. Model application 

We now apply this ensemble model to the hold-out Pennsyl- 

ania data (data not incorporated in the training dataset) as well 

s groundwater data from other states ( Fig. 5 ) to seek to detect 

nomalous CH 4 in other groundwater samples as a way to ex- 

lore our two hypotheses and to compare to previous research 

 Christian et al., 2016 ; Darvari et al., 2017 ; Nicot et al., 2017a ,

017 b, 2017 c; Sherwood et al., 2016 ; Wen et al., 2019b , 2018 ). 

.3.1. Pennsylvania hold-out data 

A total of 4,772 groundwater samples from the Shale Network 

atabase are in the Pennsylvania hold-out dataset. Among these, 

nly 64 show both [CH 4 ] ≥ 10 mg/L as well as measurements for 

ll the single predictor features. These 64 groundwater samples 

re all located in northeastern PA ( Figs. 5 and 6 ; Table S3). The

op 1,0 0 0 model predicts that 29 of these 64 groundwater samples 

how a ≥50% likelihood and, of these, 13 show ≥80% likelihood of 

eing impacted by anomalous CH 4 ( Figs. 5 and 6 ; Table S3). 

To assess the efficacy of the ensemble model for Pennsylvania, 

e compare the machine learning results to the results based on a 

ore simplified and streamlined approach by Wen et al. (2019b) . 

ased on six selected geochemical parameters (CH 4 , Cl, Ca, Na, Fe, 

nd sulfate concentration), Wen et al. (2019b) categorized ground- 

ater samples into five geochemical types. Their type 4 and 5 wa- 

ers were considered to the most likely to be impacted by anoma- 

ous CH : their characteristics include Ca/Na mass ratio ≥0.52, 
4 
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Fig. 5. Distribution of predicted likelihood of being impacted by anomalous methane for high methane samples ( ≥ 10 mg/L) across the U.S. by considering the top 10 0 0 

sub-models: (A) Pennsylvania hold-out data, (B) New York data, (C) Texas data, and (D) Colorado data. 

Fig. 6. Maps showing locations and the range of predicted likelihood of being impacted by anomalous methane for high methane samples ( ≥ 10 mg/L) across the U.S. by 

considering the top 10 0 0 sub-models: (A) Pennsylvania and New York, (B) Texas, and (C) Colorado. 
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≥

l ≤30 mg/L, [CH 4 ] ≥10 mg/L, and dis-equilibrated Fe concentra- 

ions ( ≥0.3 mg/L) and/or dis-equilibrated sulfate concentration ( ≥
 mg/L). Using this simplified workflow from Wen et al. (2019b) , 

e identified a total of 17 samples of types 4 or 5 in the hold-

ut PA dataset. Ten of these 17 samples were used to train 

he ensemble model and five were not considered by the en- 
8 
emble model because they lacked values for all of the 15 sin- 

le geochemical features. The remaining two analyses (sample 

Ds are “PADEP_Predrill_CHK_827” and “PADEP_Predrill_Bradford- 

urlington_T_005-well”; Table S3) were detected accurately (true 

ositives) by the top 1,0 0 0 model as showing a high likelihood (i.e., 

50%) of impact by anomalous CH 4 . 
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In addition to the two samples detected by both the ensemble 

odel in this study as well as by Wen et al. (2019b) , the ensemble

odel also identified 27 other samples with a predicted likelihood 

f ≥50% (12 samples ≥80%) of anomalous CH 4 . The workflow of 

en et al. (2019b) did not detect these 27 samples as impacted 

y anomalous methane because Cl > 30 mg/L or sulfate < 6 mg/L. 

f the new ensemble model approach is correct, these samples are 

mpacted by anomalous methane and were false negatives in the 

revious study. Lending credence to the conclusion that these sites 

ere impacted by anomalous methane is the observation that all 

ut 11 of these 27 samples were from four areas that lie near 

ocations with known contamination as reported in the literature 

 Llewellyn et al., 2015 ; Wen et al., 2019b , 2018 ) ( Figs. 5 and 6 ; Ta-

le S3). The last eleven putatively-false-negatives are not close to 

ny sites previously identified as problematic. Given that all the 

ther 16 sites show some history of local contamination, we con- 

lude that all these putatively-false-negatives were impacted by re- 

ent intrusion of anomalous methane (which might be caused by 

earby shale gas drilling) at the time of sampling, and should have 

eceived in-depth analysis to determine the source and mechanism 

f the elevated [CH 4 ]. 

Although the streamlined workflow from Wen et al. (2019b) is 

asy to implement and effective in detecting anomalous methane 

amples, it is limited in the number of geochemical parameters 

onsidered and it likely returned at least 27 false negatives for the 

A hold-out dataset. In contrast, our ensemble model evaluates a 

uller set of groundwater chemistry data and can identify waters 

hat are contaminated that were missed by the streamlined work- 

ow of Wen et al. (2019b) . 

.3.2. New York 

Although New York is almost geologically identical to Pennsyl- 

ania in the counties considered here, it is not producing shale gas 

ecause high-volume hydraulic fracturing with horizontal drilling 

s banned. Instead, conventional oil and gas drilling has long been 

mportant in the state. Brantley et al. (2014) summarized reports 

rom the PA regulator showing that the reporting rate of problems 

f anomalous CH 4 from conventional oil and gas well development 

n PA was much smaller than that observed for shale gas devel- 

pment after 2004. We thus hypothesized that we would see a 

ery low rate of anomalous CH 4 in the small dataset of ground- 

ater quality available for the region of oil and gas production in 

ew York ( Christian et al., 2016 ). This hypothesis is especially com- 

elling because geologically, northern PA is very similar to NY, but 

he laws are different, and the use of high-volume high-pressure 

ydraulic fracturing in NY unconventional reservoirs is not al- 

owed. Therefore, unlike PA samples, all of the New York samples 

ere collected in advance of high-volume hydraulic fracturing but 

ight postdate some of the nearby conventional drilling. 

In the New York dataset of 203 groundwater samples, only five 

re reported with high [CH 4 ] ( ≥10 mg/L). Four of these five sam-

les are predicted by the top 1,0 0 0 ensemble model as low likeli-

ood (i.e., < 30%) of containing anomalous methane (Tables 3 and 

4; Figs. 5 and 6 ). However, one (“ST35B”), with a [CH 4 ] of 13.8

g/L, yields a 71% likelihood of impact by anomalous CH 4 (Table 

4 and Figs. 5 and 6 ). Sample ST35B was identified in the ensem-

le model because it has a very low [Cl] of 4.1 mg/L, but relatively

igh [sulfate] and [Fe] of 8.99 and 0.42 mg/L, respectively. It is thus 

lso detected as a contaminated sample by the streamlined test of 

en et al. (2019b) and is likely, based on these tests, to contain 

H 4 that has infiltrated the groundwater recently. 

Although this sample appears to have been infiltrated with CH 4 

ecently, other lines of evidence suggest that the migration was not 

aused by oil or gas development. For example, the distance be- 

ween site ST35B (sampled in 2013) and the nearest oil or gas well 

drilled prior to 1980) is ~6 km. The large distance and long pe- 
9 
iod of time between gas well drilling and water sample collection 

ender the source of methane in water wells unlikely to have orig- 

nated from the gas wells. But this water well is drilled into the 

ery gas-rich Canadaway Formation near a large number of faults 

nd lineaments, and may nonetheless have been affected by recent 

igration of naturally occurring CH 4 to the water well. Consistent 

ith this conclusion, Christian et al. (2016) pointed out that values 

f [CH 4 ] in the NY groundwater data (including, implicitly, ST35B) 

o not statistically vary with proximity to gas wells or faults. They 

rgued that elevated [CH 4 ] in the NY samples is most likely of nat- 

ral origin. This conclusion was based on the observation that high 

CH 4 ] is often associated with Na-rich waters in valleys in NY that 

re impacted by natural brines ( Christian et al., 2016 ). However, 

hile ST35B had a high [Na] (30.1 mg/L), it had very low [Cl] (4.1 

g/L). Therefore, the high Na in that sample did not derive from 

ontamination by NaCl-rich brine (and was not flagged as such by 

he ensemble model). On the other hand, water from ST35B was 

eported to smell like ‘rotten egg’ (i.e., H 2 S) and is locally associ- 

ted with brownish red stains (pers. comm., Laura Lautz), perhaps 

ointing to ongoing sulfate reduction coupled with methane oxi- 

ation ( Wen et al., 2019b ; Woda et al., 2020 , 2018 ). Our prediction

hat ST35B contains anomalous methane might be a false positive: 

n particular, it could be water that was recently impacted by natu- 

al CH 4 rather than CH 4 migrated from hydrocarbon development 

ctivities. In future predictions with the ensemble model, a filter 

or proximity to oil/gas wells should be included (e.g., waters sam- 

led within 5 km). 

A Fisher exact test was used to test our original hypothesis, i.e., 

o test if the frequency of detection of CH 4 -impacted groundwater 

amples ( ≥50% likely to be impacted by anomalous methane) differ 

etween PA (i.e., 42/2,983) and NY (i.e., 1/78). Whether we assume 

hat ST35B is an example of anomalous methane caused by oil/gas 

evelopment or not, the Fisher test results show no statistically 

ignificant difference between PA and NY at a confidence level of 

5% ( p > 0.05). Thus, we must reject the hypothesis in that the en-

emble model reveals similar frequencies of putative contamina- 

ion by anomalous methane in the part of the Marcellus shale play 

tilizing horizontal drilling + hydraulic fracturing as compared to 

he part with conventional resource development. 

.3.3. Texas and Colorado 

We also compiled groundwater quality data from Texas to test 

he hypothesis that the frequency of identification of anomalous 

ethane in groundwater wells is higher in PA than in other shale 

lays/states. A total of 688 groundwater samples are included in 

he compiled Texas data, which cover three major shale gas plays 

n Texas: Barnett Shale, Eagle Ford Shale, and Haynesville Shale. 

mong these samples, [CH 4 ] is ≥ 10 mg/L in 34 groundwater sam- 

les (Table S5 and Figs. 5 and 6 ). Of these 34 samples, none were

dentified to have a likelihood of anomalous CH 4 ≥ 50%. This is 

onsistent with the findings from previous investigations of the 

ources of CH 4 in these three shale plays ( Darvari et al., 2017 ;

icot et al., 2017a , 2017 b, 2017 c), i.e., no CH 4 in these shallow wa-

er wells is associated with recent development of nearby shale gas 

roduction. 

The ensemble model was also applied to a large groundwater 

uality dataset of 10,258 water samples collected across Colorado 

ainly within the Denver-Julesburg, Raton, San Juan, and Uinta- 

iceance basins ( Fig. 1 ). Of these samples, high [CH 4 ] ( ≥10 mg/L)

amples ( n = 58) with complete measurements for all required sin- 

le geochemical features exist only in the Denver-Julesburg Basin 

nd Raton Basin ( Fig. 1 ). These 58 samples were collected from 29 

ites (Table S6), of which only four samples from four sites (i.e., 

05739, 755481, 752672, 750143) are associated by the ensemble 

odel with a likelihood ≥50% for anomalous methane. Three of 

he sites are in the Denver-Julesburg Basin and one in the Raton 
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asin. All other samples/sites with high [CH 4 ] are calculated to be 

 50% likely to have been impacted by anomalous CH 4 . A detailed 

iscussion of the results of model application to Colorado dataset 

s included in the supporting information. 

With these data, we test our second hypothesis, namely that 

he frequency of detection of anomalous methane in the Marcellus 

hale play is higher than in Texas + Colorado. Treating the Col- 

rado and Texas measurements as one dataset, the combined fre- 

uency of detection of groundwater samples showing ≥50% like- 

ihood is 4/795, statistically lower than the rate in Pennsylvania 

i.e., 42/2,983) at a confidence level of 95% ( p = 0.04) using the 

isher exact test. This finding supports our second hypothesis that 

he frequency of detection in the Marcellus shale play is higher 

han in Texas and Colorado. To explain this result, we point to 

ammond et al. (2020) which suggested that most of the anoma- 

ous CH 4 released from gas wells in the US occurs because primary 

ementation is not completed along the full lengths of production 

asings from the target shale to intermediate casings (or to surface 

asings, if intermediate casings are not used). The higher frequency 

n the Marcellus play could therefore derive from differences in 

asings and cementation or differences in gas contents at interme- 

iate depths for boreholes in that play as compared to other plays. 

. Conclusion 

We presented a machine learning ensemble model that shows 

hat salinity-related and redox-related measurements are effec- 

ive geochemical features that can detect anomalous methane in 

roundwater. One problem with the application of the model to 

ate is that we cannot exclude the possibility that differences in 

ample sizes contributed to differences in detection frequencies. 

learly, larger datasets for all shale gas plays could be used to 

liminate this problem. Furthermore, a machine learning model 

hat incorporated additional geochemical measurements such as 

sotopes would presumably be even more adept at finding evi- 

ence of anomalous CH 4 . 

For the regions we studied (PA, TX, CO, NY), the frequency of 

eported water samples with [CH 4 ] ≥10 mg/L, the level often con- 

idered to be dangerous, was 2.1%, 5.8%, 7.4%, and 3.4%. In con- 

rast, the frequency of identification of anomalous methane by the 

nsemble machine learning model was 1.4%, 0%, 0.9%, 1.3% (with 

T35B) and 0% (without ST35B). These values were determined by 

pplication of the ensemble model where we detected 42/2,983, 

/338, 4/457, and 1/78 (or 0/77) of the water samples were ≥50% 

ikely to be impacted by newly migrated natural gas in these states, 

espectively. One NY sample, flagged as likely to have newly mi- 

rated methane, was sampled ~6 km from the nearest oil/gas well, 

nd thus may be contaminated by new methane from a different 

ource. Fisher exact tests show statistically significant differences 

etween the results for PA versus TX + CO (i.e., with evidence for 

 higher frequency of migrated methane sites in PA) but show no 

tatistically significant difference within the Marcellus shale play 

etween regions using versus not using high-pressure high-volume 

ydraulic fracturing. The new machine learning tool appears to be 

seful in detecting anomalous methane in multiple shale plays. 

uture work should include additional training and validation of 

ata-driven models as new data from presumably impacted sites 

n shale plays other than the Marcellus become available. 
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