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A B S T R A C T   

Analytical and numerical solutions have been proposed to model reaction fronts to study soil formation. With 
growing access to large geo-datasets and powerful computational capacity, data-driven models are becoming 
increasingly useful. We therefore explored the use of a neural network (NN) guided by a physics-based model 
(PBM) to simulate the depth profile of feldspar dissolution in soils. Specifically, we explored this hybrid neural 
network (HNN) to see if it could predict reaction fronts as a function of important variables known from domain 
knowledge: site climate characteristics (temperature T; precipitation P), geomorphic parameters (soil residence 
time t; erosion rate E), and parent material mineralogy (quartz content Q; albitic feldspar content of the feldspar 
A). We evaluated the mean square error (MSE) for 63 HNNs, each using a different combination of training data 
(i.e., soil profiles) and environmental variables. The HNNs trained to four or five soil profiles that used a subset of 
t, T, Q, E, and A as predictor variables yielded lower MSEs than the PBM, and showed global convergence. At 
least two variables are needed to achieve an MSE within 1% of the corresponding PBM. The HNNs generally 
predicted the slope better than the depth of the front because the PBM was not used to predict depth. HNN results 
identify t and P as the most and least useful variable in predicting the reaction front, respectively. This is the first 
time a NN was hybridized to a PBM to simulate reactions in soils. As part of this effort, we developed a tool to 
identify cases which have converged to a global solution, and cases which present local solutions. The approach 
shows promise for future efforts but should be applied to larger sets of soil profile data and PBMs that predict 
both the depth and slope of reaction fronts.   

1. Introduction 

Recent improvements in data-driven modeling have opened up new 
avenues to assess Earth and environmental science data (Bergen et al., 
2019; Shen et al., 2018; Shen, 2018). However, this approach has yet to 
show utility in identifying natural laws from observational data 
(Schmidt and Lipson, 2009) and is generally not used in hypothesis 
testing (Shen, 2018). One promising new avenue is the integration of 
data-driven techniques with physics-based models (PBM). 

In soils, dissolution reaction fronts are localized zones of weathering 
in areas of generally downward-flowing water that appear as depth 

intervals where one mineral dissolves and is removed from the soil as a 
solute while another mineral may be precipitated (e.g., Brantley and 
White, 2009; Lichtner, 1988). Reaction fronts can reveal the flow of 
meteoric water in the subsurface over geologic time periods (Brantley 
et al., 2017) and may indicate geological rates of CO2 removal from the 
atmosphere by natural long-term processes (Godderis et al., 2019). Re
searchers have developed and adopted a variety of PBMs, e.g., reactive 
transport models (RTM), to reconstruct reaction fronts in soils (e.g., 
Godderis et al., 2019; Li et al., 2017; Maher and Navarre-Sitchler, 2019; 
White et al., 2001). These models require RTM codes that treat transport 
of solutes in flowing water (advection), transport of solutes through the 
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water in the soil and rock pores (diffusion), and chemical reactions be
tween solutes and the soil grains (e.g., Lebedeva et al., 2007; Li et al., 
2017; Lichtner et al., 1996). Although RTMs are becoming increasingly 
useful to predict changes in aqueous and solid-phase chemistry over 
space and time, they are often difficult to parameterize because of the 
lack of data for and prior knowledge of the environmental, thermody
namic, and kinetic conditions of the associated system (e.g., Moore et al., 
2012). Researchers therefore generally rely on uncertainty propagation, 
sensitivity testing (both local and global) of parameters, and calibration 
to evaluate the importance of the many required but generally uncon
strained or loosely constrained parameters (Laloy and Jacques, 2019). 
To ascertain the uncertainty of the model prediction accurately can 
require thousands to tens of thousands of simulations. 

Several published papers have explored the use of neural networks 
(NN) to simulate aspects of soil-water evolution. One such recent effort 
was to determine dispersivity and retardation factors of solutes in waters 
infiltrating soils (Mojid et al., 2019). Another team trained a NN to a 
reactive transport simulation of a geochemical system considered at 
microscopic scale and then successfully used it within a model of a 
macroscopic system (Prasianakis et al., 2020). Another research effort 
attempted to use a NN as an emulator model in comparison to a com
plete reactive transport model (Laloy and Jacques, 2019). 

Here, we focus on solid-phase chemical and mineralogical profiles in 
regolith over space and time. These solid-phase datasets document the 
long-time interaction of soil materials and meteoric waters. Generally 
when using reactive transport models to simulate the changes in soil 
materials during weathering, we often start with a known depth profile 
of soil/rock composition, the change of which over long time periods 
due to weathering is dictated by infiltration and percolation of recharge 
water through the soil profile (e.g., Moore et al., 2012). In this study, we 
did not seek to simulate this full complexity of processes. Rather, we 
tried to take a small first step in developing a NN for use in predicting 
reaction fronts in soils. We sought specifically to minimize model 
discrepancy between a PBM that had been previously proposed to 
describe a single reaction front in a soil column (Brantley et al., 2008) 
and predictions from the use of NNs. Note, this simplified PBM is ulti
mately a sigmoidal function fitted to the sodium concentration in 
solid-phase soil across depth. We attempted to develop a hybrid neural 
network (HNN) that incorporates the NN and this PBM to explore 
whether NNs can be used to improve the accuracy of physics-based 
modeling results and whether we can extrapolate findings from one 
location to another. We trained the HNN with soil data included in the 
training data and then tested the trained model against data from other 
soil profiles contained in the testing data. We sought to determine if the 
HNN was able to (1) simulate soil profiles that were not part of the 
training data but had formed in a similar climate and erosional regime 
like the soils in the training data; (2) simulate soil profiles that were not 
part of the training data and had formed in different climates; and (3) 
simulate soil profiles that were not part of the training data and had 
formed in different erosional regimes. Our approach differs from the 
previous NN efforts in that we focus on the solid-phase chemistry in 
water-rock reaction systems which represent the integrated results of 
weathering processes over a longer timescale compared to the solute 
chemistry. In addition, unlike the PBM which requires domain knowl
edge of every single simulated soil profile for the model parameteriza
tion, our proposed HNN can potentially extrapolate the knowledge (i.e., 
trained HNN) learned from one or more soil profiles to the other (i.e., 
predictions using the trained HNN). We anticipate that such HNNs could 
eventually become of great help to simulate soil profiles without the 
need of prior domain knowledge. 

2. Theoretical background 

2.1. Soil profiles 

We first compiled soil chemistry data from a few soil profiles that 

have formed as meteoric water infiltrates parent material over geolog
ically long periods of weathering (e.g., Brantley and Lebedeva, 2011). 
We model the soils as one-dimensional systems where the parent ma
terial (rock or sediment) is exposed and can be affected by erosional 
processes that may remove material from the land surface while mete
oric water infiltrates, on net, unidirectionally downward. Over time, 
minerals dissolve and precipitate in the soil column. Therefore, the 
abundances of different minerals vary with depth over time. Multiple 
minerals that have different solubility exist in soil and rock. For 
example, rocks commonly contain quartz (mostly insoluble) plus feld
spar (soluble). Thus, in many soils, feldspar weathers to precipitate a 
clay such as kaolinite (insoluble) while the quartz remains unweathered, 
propping open the porosity and holding the overall volume of the 
weathering material constant (isovolumetric weathering). Feldspar 
contains the common element sodium (Na), but kaolinite does not 
contain Na. Therefore, weathering of a rock column (that includes 
feldspar + quartz) yields a column with decreasing concentrations of Na 
near the land surface. Na is removed from the soil layers as kaolinite is 
precipitated until the Na concentration (and by inference, feldspar) 
reaches zero at the land surface. At that point, the soil at the land surface 
is strictly quartz + kaolinite. The depth interval over which Na con
centration varies from zero to the abundance in the parent material is 
called the interval of the reaction front. In some soils, the reaction front 
can be overlain by a depth interval that lacks feldspar, if the reaction 
front has advanced and no longer truncates the land surface. 

As rock material weathers to soil, it can lose mass not only by (bio) 
geochemical weathering (e.g., dissolution) but also at the land surface, 
by physical losses known as erosion (Riebe et al., 2016). While weath
ering of a rock column (that includes feldspar + quartz) yields a column 
with decreasing concentrations of Na towards the land surface, erosion 
can remove the topsoil. Regardless of whether a soil is eroding or not 
eroding, the depth profile of Na concentration can generally be used to 
indicate the feldspar reaction front. More details of soil weathering can 
be found in the supplementary text (“Theoretical background of Soil 
Weathering”). 

2.2. Physics-based modeling of soil profiles 

A full implementation of a reactive transport model to simulate soil 
weathering requires many parameters that are often unknown. More
over, the choice of those parameter values to ensure a successful model 
simulation is often non-unique. This property of equifinality is common 
to a wide variety of Earth and environmental science models (Shen, 
2018) including hydrologic models (Beven and Freer, 2001), models of 
global biogeochemical cycling (Tang and Zhuang, 2008), reaction ki
netics (Bandstra and Tratnyek, 2004), and water quality models (Schulz 
et al., 1999). In many of these cases it is possible to formulate relatively 
simple empirical relations that describe biogeochemical processes on an 
average basis over sufficiently large spatial or temporal scales (Savenije, 
2001). Such models have the advantage of being parsimonious and 
capable of describing the relevant phenomena under a broad range of 
environmental conditions but with the drawback of parameter values 
that are sui generis and that must be estimated from data (e.g., by 
regression analysis). This modeling approach is referred to as 
physics-based modeling or PBM as illustrated in Fig. 1a. 

Brantley et al. (2008) proposed a parsimonious PBM for soil profiles 
that accounts for the opening of reactive surface area as the parent 
material first begins to weather leading to eventual depletion of 
non-conservative elements (such as Na) as the weathering process 
moves toward completion. Brantley et al. (2008) showed that under a 
generalized set of assumptions, the soil profile can be modeled as the 
reaction front of an autocatalytic process, i.e., a sigmoidal curve of the 
form: 
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C =
C0

C0 − Cx=0

Cx=0
exp(Γini⋅k̂⋅x) + 1 (1)  

where C is the concentration, or abundance (mol/m3), of an element 
such as Na in a soil profile at a given depth x below the land surface, Γini 
describes the roughness of the surface area of the dissolving mineral, and 
k̂ is a lumped kinetic parameter that describes the reactivity of the 
mineral and its initial specific surface area. Cx=0 is the concentration 
(abundance) of the element at the land surface (x = 0), or, for a reaction 
front that has advanced into the subsurface, at the top of the front. C0 is 
the concentration of the element in the underlying (unweathered) 
parent material. 

Eqn. (1), when applied as a non-linear regression equation, suitably 
describes soil profiles developed on several different parent materials, 
under different climate conditions, and with different geomorphic time- 
scales (Brantley et al., 2008). Each soil profile, however, requires a 
unique set of parameter values and, therefore, Eqn. (1) lacks predictive 
power for soil profiles developed under novel conditions. To overcome 
this limitation, we sought to leverage the power of NN to develop an 
HNN that could similarly simulate the depth profile of Na content in the 
soil after long duration weathering. Although this PBM is not nearly as 
powerful as an RTM, our attempt to develop an HNN using this PBM 
represents a first step in the direction of ultimately hybridizing with 
RTMs. Furthermore, the equation implicitly reveals the reaction front 
thickness – an observable that can provide information related to the 
advective Damköhler number for the reactive transport system in some 
soils (Brantley and Lebedeva, 2021). 

2.3. Hybridization of the physics-based model with an artificial neural 
network 

Artificial neural networks (ANNs) represent a group of widely-used 
machine learning models (Fig. 1b) that can show superior perfor
mance in regression fitting problems (Goodfellow et al., 2016; LeCun 
et al., 2015). Typically, these models are described as a stack of layers 
consisting of an input layer, at least one hidden layer of neurons, and an 
output layer. The input layer corresponds to the independent (or pre
dictor) variable(s) in the regression analysis while the output layer 
corresponds to the dependent (or target) variable. 

Each hidden layer in ANNs consists of several neurons and the input 
to each neuron is a linear combination of the outputs from the previous 
layer as specified by a vector of weights W and a bias b, i.e., activation 
function [Eqn. (2)]. Note that the activation function could be set as non- 
linear (e.g., sigmoid). 

hi,j = σ
(

W→i,j⋅ h
→

i− 1 + bi,j

)

(2) 

Here, i denotes the i-th layer and j denotes the j-th neuron within the 

layer. For the j-th neuron in the i-th layer ( h
→

i,j), the output of this neuron 

is the bias scalar bi,j plus the weighted sum of input neurons from the 

previous layer, h
→

i− 1 (the vector of weights is W→i,j). The vector length in 
Eqn. (2) is determined by the previous layer while the maximum of 
indices i and j are hyperparameters defined by the user. ANN containing 
multiple hidden layers is able to approximate arbitrarily complicated 
functions (Cybenko, 1989; Hornik, 1991), a property known as 
universality. 

Although universality is a useful property when it comes to fitting 
variable phenomena, it is a limiting factor for their direct use in scien
tific discovery (Brouwer et al., 2014; Livingstone et al., 1997). In a 
manner analogous to equifinality in PBMs, universality implies that 
many ANNs can be constructed to adequately capture the state of 
knowledge about a natural phenomenon. While this does not limit the 
use of ANNs in forecasting, it does limit the use of ANNs for extracting 
principles or testing hypotheses. To overcome this limitation, NNs are 
now being hybridized with PBMs to learn new scientific concepts from 
observational data (Karpatne et al., 2017). 

An HNN (Fig. 1c) combines a PBM and a NN. Different from the NN 
itself, the output of the HNN is still governed by the physical formula. In 
the HNN, a NN is used to find the optimal values of parameters (e.g., 
environmental variables) in the formula by modeling and minimizing 
the mismatch between prediction results from the PBM and the obser
vations. For the example here, the HNN predicts the term, Γini⋅k̂, in Eqn. 
(1) by using site climate characteristics, geomorphic rates, and parent 
mineral composition as the input layer to an ANN. Specifically, we assess 
how the term, Γini⋅k̂, varies with the residence time and quartz content of 
the soil, the erosion rate, temperature and precipitation rate of the soil 
site, and the composition of the feldspar observed in the targeted reac
tion front. 

The PBM was derived (Brantley et al., 2008) to describe a generic 
feldspar reaction front in soil (e.g., Brantley and White, 2009), in which 
the proposed formula, Eqn. (1), has only been used to fit individual soils. 
The parameter for surface area and kinetic reactivity [Γini⋅k̂ in Eqn. (1)] 
is a function of not only soil depth x but also the residence time of 
particles in the soil and other factors as further discussed later. In this 
work, we explore how the value of Γini⋅k̂, which is implicitly related to 
the advective Damköhler number for reactive transport in some soils 
(Brantley and Lebedeva, 2021), varies with environmental conditions 
and parent material characteristics. Specifically, previous works have 
shown that soil/rock weathering is affected by a set of soil-forming 
factors related to climate, biota, relief, parent material, and time 
(Dokuchaev, 1883; Jenny, 1941; Merrill, 1906). Thus, variations in the 
value of Γini⋅k̂ could be affected by a combination of variables such as 
soil residence time or exposure time (t), mean annual temperature (T), 
erosion rate (E), and/or precipitation rate (P), and so on. Given that k̂ 
includes the rate constant of feldspar dissolution, and this is known to 
vary with the albite content (A) of the dominant feldspar in the parent 
material (Blum and Stillings, 1995), we also sought to understand if the 
sodium (Na) content of the feldspar (equivalent to albite content) 

Fig. 1. Conceptual illustration for (A) physics-based model or PBM, (B) neural network or NN, and (C) hybrid neural network or HNN. The PBM develops an equation 
(central box labelled “formula”) to predict output values (y) from input value(s) (x) for physical or chemical processes. This formula is based on physical observations 
and reflects physics-based laws. Thus, a PBM provides an equation with parameters where the parameters (here, Γ ini⋅k̂ ) in the formula are thought to be explained 
by known observable phenomena. These parameters may change as a function of properties of the environment where the data samples are collected. In contrast, the 
NN directly learns the function that links the input and output. A HNN uses both the PBM and the NN to learn the appropriate parameters. 
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controls the characteristics of the reaction front. Finally, we also aimed 
to test the hypothesis that the quartz content (Q) of the starting material 
might also affect the depth of the reaction front as suggested by reactive 
transport models (Brantley et al., 2017). These are all specific tests that 
we chose to pursue within our overall goal of exploring how to use a NN 
with a PBM for soil modelling. 

To formulate the HNN, we defined f(z) = Γini⋅k̂, where z represents 
any combination of predictor variables, e.g., f(t), f(t,T), f(P,E). f(z) is a 
NN consisting of one input layer, two fully connected hidden layers 
[Eqn. (2)], and one output layer [Eqn. (3)]. The activation function of 
the first hidden layer is a sigmoidal function [Eqn. (4)] while the acti
vation function of the second hidden layer is the simple linear combi
nation of all input neuron results. The output of the second fully 
connected layer is not determined by an activation function but rather 
by the PBM as shown in the equation below that is modified from Eqn. 
(1). 

C′

=
1

C0 − Cx=0

Cx=0
exp(f (z)⋅x) + 1 (3)  

σ(z) = 1
1 + e− z (4)  

where we have normalized Eqn. (1) by the parent concentration C0, i.e., 
C′

= C
C0

. Eqn. (3) represents the HNN which incorporates a data-driven 
model into a physics model. The HNN is guided by the physics law 
that governs the PBM, while the lumped rate parameter, Γini⋅ k̂, is 
inferred from data using a NN. 

3. Computational methods 

3.1. Soil datasets 

Seven soil profiles were compiled from four sites in the U.S.: Santa 
Cruz (California; four soil profiles: SCT1,2,3,5; Fig. 2), Davis Run (Vir
ginia), Panola (Georgia), and Jughandle State Natural Reserve (Cali
fornia) (Table 1 and S1). Except for the Jughandle soil profile, all other 
soil data were previously investigated (Brantley et al., 2008, 2017, 2008; 
Brimhall and Dietrich, 1987; Eckert et al., 2012; Maher et al., 2009; 
Masiello et al., 2004; Merritts and Bull, 1989; Merritts et al., 1991; 
Moore et al., 2012; Northup et al., 1995; Uroz et al., 2014; White et al., 
2001, 2008, 2009). Detailed description of these soil profiles can be 

found in the supplementary text “Detailed Descriptions of Soil Datasets”. 
Sodium concentrations in the solid phases of these soils from these seven 
profiles were normalized by the sodium concentration in the corre
sponding parent material (underlying unweathered material) before 
being fed into the neural network. Normalized sodium concentration 
mostly varied from 0 to 1. Predictor variables were not rescaled due to 
two primary reasons: 1) our NN is a two-layer dense neural network that 
should be capable of learning to scale the variables itself without the 
need of manual preprocessing (Hornik et al., 1989); 2) we also sought to 
derive the mathematical formula from the HNN that we can apply to 
calculate the lumped parameters of the PBM. The data preprocessing 
without the rescaling allows the direct derivation of such mathematical 
formula from the HNN. 

3.2. Model setup and model training 

Based on knowledge from soils research and modeling (Brantley 
et al., 2017; Lebedeva et al., 2010), we hypothesized that residence time 
(t), temperature (T), precipitation (P), erosion rate (E), quartz content 
(Q), and the albite content of the feldspar in the parent material (A) 
could explain differences in the reaction fronts in different soils. We thus 
used t, T, P, E, Q, and A as predictor variables in the HNN. Measurements 
of predictor variables were not scaled while Na concentrations were 
normalized by the Na concentration in the parent material. In total, an 
HNN was trained and constructed for each of the 63 different combi
nations of predictor variables. In every case, Cx = 0 and Co (Table 1) 
were treated as known quantities. Full results of the training and test 
phases for each of the 63 HNNs are summarized in Table S2. Although 
we did not perform feature selection in this study since the selection of 
all the six features was already parsimonious and the computational cost 
was not an issue for the proposed simple HNN, it might be necessary to 
perform feature selection if the proposed HNN would be used to simulate 
other soil profiles using a lot more features from the perspective of 
computational efficiency. 

Models were trained with three different sets of soil profiles: (SCT1, 
SCT 2, SCT 3, SCT 5, Panola) or (SCT1, SCT 2, SCT 3, SCT 5, Davis Run) 
or (SCT1, SCT 2, SCT 3, SCT 5) when possible (Table S2). Models using 
these training sets were labelled a, b, and c, respectively. For variables 
such as residence time t where every soil was characterized by a different 
value, i.e., the investigated soils all differed in estimated residence 
times, the model (e.g., in this case f(t)) was trained with all three sets. 
But for other variables such as T where subsets of soils displayed the 
same value(s) for predictor variable(s) (e.g., SCT1, 2, 3, 5 all have the 
same temperature T), models were not trained with all three sets of soils 
(a, b, c). For this example, f(T) was only trained with a and b sets. Given 
this, only a subset models of f(t), f(Q), f(A), f(t,Q), f(t,A), f(Q,A), and f(t, 
Q,A) were trained with training set c and then used to predict the other 
three non-chronosequence (non-SCT) soils. 

Optimized weights and biases were found for the NN component of 
the HNN by minimizing mean square error (MSE) between the HNN 
output and the normalized measured Na concentration data. MSE was 
chosen to measure the model performance because it reflects the 
discrepancy between model prediction and observational results. The 
Adam method (Kingma and Ba, 2014) was used for stochastic optimi
zation with a learning rate of 0.001. The optimization was terminated 
after 15,000 steps, upon which all our models converged (i.e., MSE 
stopped decreasing significantly). 

The first hidden layer of 16 neurons was used with a sigmoid acti
vation function. The second hidden layer has 1 neuron with linear 
activation. We performed a grid search to determine the best number of 
neurons based on MSE. For the number of neurons in the first layer, we 
tested 8, 16, 32 while 1 and 2 were tested for the hyperparameter of the 
number of neurons in the second layer. Another hyperparameter – the 
number of hidden layers – was also fined tuned by testing values of 1 and 
2. Given the extremely small number of layers (i.e., two) of the NN and 
the small number of features (i.e., at most six), this simple structured 

Fig. 2. Depth profiles of normalized Na concentration in the seven soil profiles 
discussed in this study. All Na concentrations are divided by that of the cor
responding parent material. 

T. Wen et al.                                                                                                                                                                                                                                     



Computers and Geosciences 167 (2022) 105200

5

neural network model is very unlikely to overfit. In particular, for those 
best-performing HNNs (see Section 4.2), each of them considers only 
two features, which renders it less likely for them to overfit. 

3.3. Regression analysis with physics-based models 

Parameters in the PBM – C0, Cx = 0, and Γini⋅k̂ – were selected to fit 
each soil profile by minimizing the chi-squared statistic (χ2). χ2 is the 
sum-of-square errors between Eqn. (1) and the measured Na concen
trations normalized by the variance of the residuals. For an individual 
soil profile, χ2 is directly proportional to the MSE as discussed below. χ2 

was minimized using the Levenberg-Marquardt algorithm (as imple
mented in Igor Pro 8 from Wavemetrics Inc.) with a termination crite
rion of nine iterations with no more than a 0.1% decrease in χ2 (Press 
et al., 2007). Initial guesses for the parameters were determined by 
visually estimating (1) the concentration of Na in the parent material, 
(2) the slope of the soil profile at its inflection point, and (3) the depth of 
the inflection point. The initial guess for C0 was taken directly from the 
estimated parent concentration. Initial guesses for the other two pa
rameters were calculated as: 

Γinik ≈
4

C0

⃒
⃒
⃒
⃒
dC
dx

⃒
⃒
⃒
⃒

IP
(5)  

Cx=0 ≈
C0

1 + exp
(
Γinik|x|IP

) (6)  

where the subscript IP denotes values estimated at the soil profile in
flection point. 

In several cases, we followed standard practice and excluded a few 
near-surface concentration data points from the fits owing to apparent 
exogenous disturbance (i.e., dust inputs). These near-surface soils were 
perturbed by eolian input and bioturbation, which interfered with the 
pristine signatures of soil development over time (Brantley et al., 2008). 
Data excluded from fitting were the first 2 m of the ~10-m-deep Panola 
granite profile, the first 5 m of the ~22-m-deep Davis Run profile, and 
the first meter of the ~6-m deep Jughandle profile. 

4. Results and discussion 

4.1. Training phase of the hybrid neural network 

MSE values for the HNN results for all seven soil profiles ranged from 
0.0030 to 0.38 with an average MSE of 0.072 (Table S2). Below, we 
compare the HNN MSE values with the corresponding PBM MSE values 
by calculating the percent difference between these two MSE values as 

follows: 

Percent ​ ifference in MSE=
MSEHNN − MSEPBM

MSEHNN
(7) 

In some cases, the HNN was able to achieve slightly lower MSE than 
the PBM (see Table S2) but in all such cases, the difference in MSE was 
likely due to rounding of the PBM parameters as previously reported 
(Brantley et al., 2008). For visualization purposes, these negative 
percent differences were set to 0.1% in Figs. 3, 4 and 6. This value 
effectively identifies these cases as ones where the HNN was able to 
precisely reproduce the PBM. 

In other cases, the HNN underperformed the PBM. This could be due 
to HNNs that converged to local minima in MSE instead of the global 
minima or it could be due to an inadequate set of predictor variables. A 
methodology for identifying cases of local convergence is developed in 
Section 4.1.1. In Sections 4.1.2 and 4.1.3 we assess how the number of 
predictor variables controlled the prediction accuracy of HNNs as well as 

Table 1 
Summary of parameters describing soils.a.  

Name Residence time (t, 
ky) 

Temperature (T, 
oC) 

Erosion rate (E, m/ 
My) 

Precipitation (P, 
mm/y) 

Quartz content (Q, 
vol %) 

Fraction of Na feldspar in parent 
feldspar (A) 

C0 (mol/ 
mc) 

SCT1 65 13.4 0 727 27.17e 0.66 1560f 

SCT2 90 13.4 0 727 23.25e 0.73 1380f 

SCT3 137 13.4 0 727 25.36e 0.72 1250f 

SCT5 226 13.4 0 727 34.08e 0.70 1320f 

Davis 25002 10 4 1040 36.3 0.94 2500f 

Panola 1714b 17 7 1240 27.5 0.77 3020f 

Jughandled 500 12.5 0c 983 34.08c 0.70c 656g  

a Values were derived from White et al. (2008) and White et al. (2001) [for summary see also Brantley et al. (2008)] unless noted otherwise. 
b These times were calculated by assuming an erosion rate of 8 m/My or 7m My and the regolith thickness of 20 m and 12 m for Davis Run and Panola soils, 

respectively, for the residence time of minerals in the regolith depth interval assuming steady-state thickness, i.e., the soil residence time. These erosion rate and 
regolith thickness values were reported in the literature (Bierman et al., 1995; Pavich, 1986; Pavich et al., 1985; White et al., 2001). 

c Assumed the same as SCT5. 
d Climate values from (Northup et al., 1995) and residence time estimated from (Merritts and Bull, 1989). 
e Calculated as vol. % based on data reported in White et al. (2008) and Brantley et al. (2008). 
f Best model fits from Brantley et al. (2008). 
g Best PBM model fits performed in this study. 

Fig. 3. Histogram of percent difference in MSE between HNNs and their cor
responding PBMs in the training phase. All negative percent difference values 
were set to 0.1% for visualization purposes. The unshaded portion of the his
togram represents those HNNs that used a subset of predictor variables and 
yielded MSE values that were 10% larger than that of at least one HNN. We 
inferred that these HNNs very likely converged to local minima instead of a 
global optimum. The green shaded portion represents those HNNs with MSE 
within 10% of that of any HNNs that use a subset of predictor variables. These 
HNNs were considered to have been more likely to converge to the global 
minima. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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which predictor variable(s) might be the most important environmental 
factor dictating the development of reaction front in the soil profile. 

4.1.1. Local convergence in the hybrid neural network 
The percent difference in MSE between HNNs and their corre

sponding PBMs in the training phase was calculated by following Eqn. 
(7) and is plotted as a histogram in Fig. 3. A total of 26 HNNs (out of 63) 
reported a MSE less than 10% of that of the corresponding PBM, indi
cating a comparable prediction performance between the HNN and PBM 
in the training phase for these 26 HNNs. 

For any given HNN we define a subset HNN as one that was trained 
with the same data but using only a subset of the same predictor vari
ables. For instance, HNN 22a was trained on SCT1,2,3,5 and Panola data 
using t, T, and P as predictor variables. HNN 7a was trained on those 
same data with t and T as predictor variables. Therefore, in our termi
nology, HNN 7a is a subset HNN to HNN 22a. 

If an HNN and all of its subset HNNs have converged each to their 
global minimum in MSE, then the parent HNN should perform no worse 
in terms of MSE than any of its subset HNNs. Of course, the parent HNN 
could outperform one or more of its subset HNNs but the reverse cannot 

occur. Because the HNN parameterization methods are stochastic, some 
allowance for slight and insignificant outperformance must be made, but 
we observed a number of cases where an HNN was outperformed by one 
of its subset HNNs by more than 10% (i.e., the MSE for the parent was 
greater than 1.1 times the MSE for the subset HNN), which are defined as 
locally-converged HNNs. Otherwise, HNNs are named as globally- 
converged HNNs. 

In Fig. 3, those HNNs that were not significantly outperformed (at a 
level of 10%) by any subset HNN have been shaded green. These HNNs 
have likely converged to a global minimum. A characteristic feature of 
these apparently well converged HNNs is that they tended to use a larger 
number of predictor variables (see Section 4.1.3). In contrast, we also 
found many HNNs with MSE 10% larger than that of at least one subset 
HNN, suggesting convergence to a local minimum in MSE, i.e., local 
convergence. This latter circumstance could lead to the conclusion that 
additional predictor variables lowered the MSE of the HNN. In the 
following discussion, we excluded all these locally-converged HNNs, 
and only considered those HNNs more likely to have converged to the 
global minima (shaded green in Fig. 3). 

Fig. 4. Histogram of percent differences in MSE between HNNs and their corresponding PBMs in the training phase (local-converged HNNs excluded). All negative 
percent differences were set to 0.1% for visualization purposes. The shaded portion represent those HNNs that include (A) soil residence time/exposure time or t, (B) 
temperature or T, (C) precipitation or P, (D) erosion rate or E, (E) quartz content or Q, and (F) albite content of the feldspar or A as one of the predictor variables. 
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4.1.2. Hybrid neural network and predictor variables 
As discussed in the text above, six predictive factors were considered: 

climate characteristics (temperature T and precipitation P), geomorphic 
parameters (soil residence time or exposure time t and erosion rate E), 
and parent material mineralogy (quartz abundance in the soil Q and 
albite content in the feldspar A). We explored the relative importance of 
all the six predictor variables in the HNN by assessing which predictor 
variable was most frequently included in the best performing HNNs. 

Fig. 4 summarizes the number of HNNs (excluding those likely 
locally converged) that includes each of the six predictor variables. 
Among those HNNs within 10% of the MSE reported by the corre
sponding PBM, t, T, P, E, Q, and A were used in 16, 15, 1, 9, 14, and 12 
HNNs, respectively. For those HNN with a percent difference in MSE of 
less than 0.1%, 14, 11, 1, 7, 11, and 11 HNNs included t, T, P, E, Q, and 
A, respectively. 

These results suggested that soil residence time or exposure time (t) 
is the most useful predictor variable for parameterizing an HNN that can 
reproduce the behavior of the PBM with respect to slope of the reaction 
front. Temperature (T), erosion rate (E), and albite content of the feld
spar (A) are also helpful predictors while the precipitation (P) was the 
least useful predictor variable. 

The HNN ultimately predicted the parameter of Γini⋅ k̂ in the PBM 
(Eqn. (1)) using a data-driven approach, and yielded the derived value of 
Γini⋅k̂ as the function – f(z). To further illustrate how the derived f(z) 
varied with the soil residence time or exposure time (t), the most useful 
predictor variable, and how it compared to the Γini⋅k̂ in the PBM, we 
inspect the prediction results of HNN model 1c f(t) (Fig. 5). HNN model 
1c was trained to soil profiles SCT1, 2, 3, and 5. As shown in Fig. 5, the 
derived f(z) value from the HNN and Γini⋅k̂ from the corresponding PBM 
were very similar. In addition, the derived f(z) varied significantly with 
the soil residence time or exposure time. As the soil residence time or 
exposure time increased in the order of SCT1, 2, 3, and 5, f(z) first 
decreased and then increased before reaching a plateau. 

4.1.3. Hybrid neural network and number of predictor variables 
We then explored how the number of predictor variables included in 

the HNN contributed to the improvement of HNN performance (i.e., 

lowering of the MSE value). 
Fig. 6A plots the percent difference in MSE between the HNN and the 

corresponding PBM as a function of the number of predictor variables 
included in the HNN. The improvement in the MSE was significant from 
the HNN using one predictor variable to the HNN using two predictor 
variables. At best, HNNs with only one predictor variable could only 
achieve MSE values within 10% of the corresponding PBM. At least two 
predictor variables were needed to construct an HNN that achieves an 
MSE within 1% of the corresponding PBM. Adding additional predictor 
variables beyond two was not significantly advantageous. 

Among those globally-converged HNNs, a total of 23 HNNs report 
MSE values within 10% different from that of the corresponding PBM. 
Among these were seven HNNs that include two predictor variables 
(Fig. 6B and Table 2). These seven HNNs that use only two predictor 
variables are defined as the best performing HNNs in this study, and are 
further discussed below. 

4.2. Best performing hybrid neural network models 

MSE values of the seven best performing HNNs in the training and 
test phases, and the MSE values of the corresponding PBMs were listed in 
Table 2. To reiterate, a best-performing HNN is defined as (1) the HNN 
attained an MSE no more than 10% worse than any subset HNN in the 
training phase and (2) the HNN attained an MSE value within 10% of the 
corresponding PBM on the same training soil profiles. 

The predictor variable of residence or exposure time of the soil (t) 
was included in all but two of the best performing HNNs. This empha
sizes again that residence or exposure time is the most useful variable in 
predicting the slope of the reaction front using the HNN (see, for 
example, Fig. 5). Many researchers have previously emphasized the 
importance of residence time or exposure time on reactivity (Washton 
et al., 2008; White and Brantley, 2003), and by inference, on the slope or 
thickness of the reaction front. In contrast, precipitation is the least 
useful predictor variable. This latter insight from the HNN work was 
surprising from a physics point of view. The HNN is mostly predicting 
the slope of the reaction front (see discussion below), and the slope is a 
function of the infiltration velocity of meteoric water into the soil, the 
reaction rate constant, the mineral surface area available for dissolution, 
and the abundance of the reacting mineral (Brantley and White, 2009). 
Apparently, although the precipitation P at the land surface is a 
boundary condition for the infiltration velocity, the velocity at the depth 
of the reaction front is more of a function of residence time or exposure 
time than the climate variable P, at least for this subset of soils devel
oped in moderately rainy conditions. This could be related to many 
complicating factors related to evapotranspiration, biotic activity, plant 
succession, plant physiology, soil nutrient content, and climate. In 
addition, as a soil profile develops, water that initially infiltrates verti
cally and reacts with minerals begins to flow laterally, especially at re
action fronts (Brantley and Lebedeva, 2021). With lateral flow, less 
downward-advecting water percolates through the deepening reaction 
front as soil layers develop and differentiate. This in turn affects the 
slope of the reaction front. The finding from the HNN is novel in that it 
emphasizes the importance of t and de-emphasizes the importance of P 
in determining the slopes of reaction fronts in field settings. 

Among these seven HNNs, four models (i.e., 7a, 9a, 11a, 14a) were 
trained to SCT1,2,3,5 and Panola soil profiles (“a” series training set). 
Two models (i.e., 7b, 14b) were trained to SCT1,2,3,5 and Davis soil 
profiles (“b” series training set) while one model (i.e., 11c) was trained 
to only SCT1,2,3,5 soil profiles (“c” series training set). In particular, 
both f(t,T) and f(T,Q) were able to train successfully with “a” and “b” 
series training sets (7a and 7b, and 14a and 14b), while f(t,A) was able to 
train successfully with “a” and “c” series training sets (11a and 11c). 
Model f(t,T) was not trained with the “c” series training set because the 
temperature (T) did not vary across the soil profiles of SCT1,2,3,5 and f 
(t,T) therefore could not be calculated for the “c” series training set. Due 
to the same reason, f(T,Q) was not trained with the “c” series training 

Fig. 5. Plot showing f(z) predicted by HNN 1c f(t) (red triangles) as a function 
of the soil residence time. Γini⋅k̂ values derived from the corresponding PBM are 
also shown for each soil profile (green circles). Blue curve calculated from the 
function f(t) given by HNN 1c is plotted to illustrate how the f(z) value varies 
with the soil residence time in the HNN 1c. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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set. 
As for f(t,A), it was successfully trained with “a” and “c” series 

training sets but not with the “b” series training set. A comparison of 
MSE values of HNN 11b and those HNNs using a subset of predictor 
variables used by 11b indicated that HNN model 1b f(t) was 82% better 
than HNN 11b in terms of MSE values. Therefore, we inferred that HNN 
11b was likely converged locally, and it was excluded from the list of 
best performing HNNs. 

4.3. Comparison of HNN models to validation data 

Trained HNNs were also applied to predict the reaction front for 
those soil profiles not included in the training set. Reaction fronts pre
dicted by the HNN and by the corresponding PBM were plotted for all 
the seven best performing HNNs in Figs. 7–9. The depth profiles of 

normalized measured Na concentrations are also shown for comparison. 
However, given that HNNs were trained on some of the profiles, not all 
profiles are plotted for all HNN predictions. For example, for HNNs 
trained with the “a” series training set, only soil profiles for Davis Run 
and Jughandle were tested because Panola was used in training (Fig. 7). 
Likewise, for HNNs trained with the “b” series training set, soil profiles 
of Panola and Jughandle were tested (Fig. 8). For HNNs trained with the 
“c” series training set (trained only against SCT profiles), we tested the 
trained model with soil profiles of Davis Run, Panola, and Jughandle 
(Fig. 9). 

In general, trained HNNs can mostly predict the slope of the reaction 
front very well as compared to the corresponding PBM. We did not 
expect the models to predict the depth of the soil profile as well as the 
PBM. From Eqn. (5), we know that the initial guess for Γini⋅k̂ in the PBM 
depends on the slope of the reaction front. The HNN, which ultimately 
predicts Γini⋅k̂ in a data-driven way, in essence, is able to find the slope of 
the soil profile which yields a quantification for the ratio of rate of 
dissolution of the albitic feldspar and the rate of transport. However, 
Eqn. (6) shows that the initial guess for Cx=0 depends on both Γini⋅k̂ and 
the depth of the soil profile. So, since the HNN keeps the same Cx=0 value 
as the PBM while seeking potentially different values of Γini⋅k̂, HNN’s 
prediction for the depth of the soil profile is relatively inaccurate. 

5. Conclusions 

In this study we explored whether we could use hybrid neural net
works (HNN), i.e., a neural network guided by a physics-based model 
(PBM), to predict concentration-depth data for reaction fronts in soils. 
We tested the idea that an HNN might teach us which variables that 
control soil formation are the most important in controlling reaction 
fronts. We specifically tested soil residence time (t), site climate char
acteristics [mean annual temperature (T), precipitation (P)], site erosion 
rate (E), quartz content (Q) of the parent material, and/or albite content 
(A) of the feldspar. For each of the 63 combinations of these environ
mental predictor variables, we trained and tested an HNN for compar
ison to a PBM for three different sets of soil training and test datasets. To 
seek the best performing HNN in terms of mimicking the prediction 
results from the corresponding PBM, we evaluated the percent differ
ence in MSE (1) between each of the HNNs and any HNNs using the same 
subset of predictor variables in the training phase, and (2) between 
HNNs and their corresponding PBMs in the training phase. Among those 
best performing HNNs, soil residence time (t) was most frequently 
included as a predictor variable in the HNNs. 

The HNN thus taught us that soil residence/exposure time is the most 
useful predictor variable in terms of predicting the slope of a reaction 

Fig. 6. (A) Plot of percent difference in MSE between HNNs and their corresponding PBMs in the training phase as a function of the number of predictor variables 
used in the HNN. (B) Histogram of percent difference in MSE between HNNs and their corresponding PBMs in the training phase (local-converged HNNs excluded). 
All negative percent difference were set to 0.1% for visualization purposes. The blue shaded portion represent those HNNs with only two predictor variables. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
HNN and PBM results for the best performing HNNs that use only two predictor 
variables.  

Predicted soils MSE, HNN MSE, PBM f(z) Γ ini⋅kˆ

Model 7a with f(t,T) trained to SCT1,2,3,5, Panola 
SCT1,2,3,5, Panola (training) 0.0033 0.0033 – – 
Davis 0.18 0.001 1.2 0.58 
Jughandle 0.023 0.015 1.1 0.88 
Model 7b with f(t,T) trained to SCT1,2,3,5, Davis 
SCT1,2,3,5, Davis (training) 0.0031 0.003 – – 
Panola 0.17 0.0038 0.62 1.2 
Jughandle 0.029 0.015 0.68 0.88 
Model 9a with f(t,E) trained to SCT1,2,3,5, Panola 
SCT1,2,3,5, Panola (training) 0.0033 0.0033 – – 
Davis 0.18 0.001 1.2 0.58 
Jughandle 0.021 0.015 0.88 0.88 
Model 11a with f(t,A) trained to SCT1,2,3,5, Panola 
SCT1,2,3,5, Panola (training) 0.0033 0.0033 – – 
Davis 0.18 0.001 1.2 0.58 
Jughandle 0.017 0.015 0.98 0.88 
Model 11c with f(t,A) trained to SCT1,2,3,5 
SCT1,2,3,5 (training) 0.0031 0.0031 – – 
Panola 0.14 0.0038 0.82 1.2 
Davis 0.064 0.001 0.82 0.58 
Jughandle 0.019 0.015 0.81 0.88 
Model 14a with f(T,Q) trained to SCT1,2,3,5, Panola 
SCT1,2,3,5, Panola (training) 0.0033 0.0033 – – 
Davis 0.27 0.001 − 0.47 0.58 
Jughandle 0.072 0.015 0.14 0.88 
Model 14b with f(T,Q) trained to SCT1,2,3,5, Davis 
SCT1,2,3,5, Davis (training) 0.003 0.003 – – 
Panola 0.085 0.0038 1.7 1.2 
Jughandle 0.051 0.015 0.48 0.88  
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Fig. 7. Normalized Na concentration (measured, blue symbols) plotted versus depth with results from the PBM fitted to the individual data points (green line) and 
the HNN results for each soil profile (red line). Panels (A), (C), (E), and (G) are for the Davis soil profile while panels (B), (D), (F), and (H) are for the Jughandle soil 
profile. (A) and (B), (C) and (D), (E) and (F), and (G) and (H) show results from HNN models 7a, 9a, 11a, and 14a, respectively. Note: red dashed curves represent 
HNN prediction results with a vertical offset to facilitate the comparison of the slope of PBM and HNN results. The black dashed line denotes the boundary above 
which soil samples might include exogenous disturbance (e.g., eolian input and bioturbation). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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front, an observable that is related in some soils to the advective Dam
köhler number of the weathering system (e.g., Brantley and Lebedeva, 
2021; von Blanckenburg et al., 2021). Surprisingly, precipitation was 
the least useful predictor variable. We also explored how adding addi
tional predictor variables might contribute to the improvement of pre
diction accuracy of HNNs. The preliminary results showed that at least 
two predictor variables were needed for an HNN to achieve an MSE 
within 1% different of the corresponding PBM. Trained best performing 

HNNs were also used to predict the reaction front for soil profiles not 
included in the corresponding training dataset. Prediction results 
showed that HNNs can generally mimic the PBM-simulated reaction 
front with respect to the front’s slope but not with respect to the depth of 
the front, a result that is at least partly related to the limitation of the 
original PBM equation. 

This is the first time an NN was incorporated into a PBM to develop 
an HNN to simulate the depth profile of soil geochemistry. Although the 

Fig. 8. Normalized Na concentration (measured, blue symbols) plotted versus depth with results from the PBM fitted to the individual data points (green line) and 
the HNN results for each soil profile (red line). Panels (A) and (C) are for the Panola soil profile while panels (B) and (D) are for the Jughandle soil profile. (A) and (B), 
and (C) and (D) show results from HNN models 7b and 14b, respectively. Note: red dashed curves represent HNN prediction results with a vertical offset to facilitate 
the comparison of the slope of PBM and HNN results. The black dashed line denotes the boundary above which soil samples might include exogenous disturbance (e. 
g., eolian input and bioturbation). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. Normalized Na concentration (measured, blue dot) plotted versus depth with results from the PBM fitted to the individual data points (green line) and the 
HNN 11c results (red line) for soil profiles of (A) Davis, (B) Panola, and (C) Jughandle. Note: red dashed curves represent HNN prediction results with a vertical offset 
to facilitate the comparison of the slope of PBM and HNN results. The black dashed line denotes the boundary above which soil samples might include exogenous 
disturbance (e.g., eolian input and bioturbation). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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proposed HNN consisted of only two layers and a small number of 
predictor variables, the preliminary results of our work indeed pointed 
out a promising direction for the application of NN in the even more 
complex PBM (e.g., high resolution reactive transport models): replacing 
the sub-model of a PBM with a machine learning model to either 
simplify the complicated parametrization that might be in high demand 
of domain knowledge or to improve the computational efficiency as the 
machine learning models usually run a lot faster than the corresponding 
physics sub-model (e.g., Prasianakis et al., 2020; Reichstein et al., 2019). 
This requires that NN/HNN models be generalized to more soil profiles 
(Mojid et al., 2019) and be improved to incorporate automation of 
NN/HNN training (Prasianakis et al., 2020). 

Computer code availability 

All hybrid neural network models in this study are implemented 
using the TensorFlow 1.13.1 with the Python 3.5. Source codes of model 
development and application as well as the associated input data can be 
downloaded from the corresponding GitHub repository via this link: 
http://doi.org/10.5281/zenodo.6974714. 
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