Data Analysis and Statistics

EAR 419/619 Aqueous Geochemistry Lab 3

What does an instrument report?

• **Raw data** typically consists of instrument response values with units that depend on the method of detection used by the instrument (e.g., conductivity, absorbance)

Separation of Polarizable Anions Using the IonPac® AS11 Column

Ion chromatography: raw data = area under the peak

Measured as µS*min

Raw data are converted to concentration values using a *calibration curve*

Calibration curves are constructed by measuring instrument response to solutions of known concentration (calibration standards)

Linear regression is used to derive the relationship between x and yvalues in order to calculate unknown concentrations from the raw data measured on the instrument

Samples are best quantifiable within the calibration range

The calibration curve can be used to calculate analytical error (details in lab handout)

Samples are best quantifiable within the calibration range

Data Visualization

What are the properties of a good figure?

The purpose of a figure is to visually display results in a way that best communicates information to the reader

- gives all necessary information (e.g., titles, units)
- highlights important trends (similarity or dissimilarity between sets of data points
- Clear and easy to read: large text, simple font, large symbols, high contrast
- Figures <u>need</u> axes, axes labels with units; figure titles and grids are not needed

How can we improve this figure?

Default Excel graph (yikes!)

K (mg/L)

A few ways to plot water chemistry data:

- Measured value (e.g., concentration, conductivity, temperature, pH) as a function of a variable (distance, depth, time)
- Measured value A vs measured value B
- Solute ratios (to account for changes in concentration due to water volume or to compare different sources)
 - Cl is often considered to be *conservative* (does not chemically react, derives mostly from precipitation) and is used to normalize data to account for changes in water volume due to evapotranspiration or dilution
- Ternary or Piper diagrams summaries chemical composition of water samples; classifies water on the basis of relative proportions of major ions

Gaillardet et al., 1999

Bivariate Plot End Member Mixing

Distance between endmembers

To compute the percent mixing in a sample, you can simply measure distances on the bivariate plots (e.g. Cl vs Na).

Simply measure (with i.e. with a ruler) distances off of a graph.

Percent of endmember 1

Percent of endmember 2

in the mixed water

in the mixed water

Piper Plot

- Combination of two tri-linear plots
 - One tri-linear plot of anions (Cl, SO₄, HCO₃)
 - One tri-linear plot of cations (Ca, Mg, Na+K)
- Concentrations are plotted as a percentage of the total concentrations in the unit of meq/L for cations (or anions)
 i.e., 50% Ca, 40% Mg, 10% Na+K
- Locations on triangles are projected onto a diamond point is plotted where they meet
- Sometimes the circle shows the relative total ion concentrations (TDS)

Example of Tri-linear Plot

Example of Tri-linear Plot

Example of Tri-linear Plot

Piper Plots

Geochemical Facies

The Four Major Water Types:ICO3Associated w/ limestoneHCO3Associated w/ gypsumAssociated w/ ion-exchangeAssociated w/ halite/brines

Summary – Piper Plot

- 1. Measure the concentrations of the major ions:
 - Mg²⁺
 - Ca²⁺
 - Na⁺ and K⁺
 - SO₄⁻
 - Cl⁻
 - $HCO_3^- + CO_2$

Summary – Piper Plot

- 2. Calculate the concentration of each ion (or group of ions) in meq/L
- 3. Calculate the relative concentration (%meq/L) for cations and anions
- 4. Plot results.
- On each axis is the %meq/L of each ion (or combination of ions)

Practice Example for Piper Plot

Table 10.	3 Inc	organic	Chemistry	of Typi	cal Nati	ural Wate	er Sample	es (mg/L))		
Source	pН	Ca ²⁺	Mg ²⁺	Na^+	K +	HCO ₃	SO ₄ ^{2–}	Cl⁻	SiO [*] ₂	TDS	
Precipitation:											
1	4.3	0.26	0.03	0.07	0.05	_	3.03	0.24	_	6	
2	5.4	0.41	0.59	4.36	0.10	—	1.97	8.2	_	16	
Sea Surface:											
3	7.8	423	1320	11,100	410	129	2790	19,900	1-10	36,100	
Rivers:											
4		19	2.3	6.4	1.1	68	7.0	6.5	11.1	122	
5	—	83	24	95	5.0	135	270	82	9.3	703	
Groundwater:											
6	6.9	10	1.5	5.0	0.8	19	5.5	11	_	49	
7	7.6	24.5	10.7	24.9	4.7	170	21.8	7.1	56.5	234	
8	7.5	69	29	3.5	1.1	297	37	9.4	11	320	
9	6.9	21	3.1	170	8.4	400	12	85	12	510	
10	7.3	210	100	2000	46	300	1200	3000	6.7	6700	

From Fitts Table 10.3

%meq/L (some rounding errors)

Cations (+)

Source	Ca ²⁺	Mg ²⁺	Na ⁺	K +	Na ⁺ + K ⁺	HCO ₃ -	SO ₄ ²⁻	Cŀ
Precipitation (1)	67	12	15	6	21	0	90	10
Precipitation (2)	8	19	72	1	73	0	15	85
Sea water (3)	3	17	78	2	80	0	9	91
River water (4)	66	13	19	2	21	77	10	13
River water (5)	40	19	40	1	41	22	55	23
Groundwater (6)	59	14	25	2	27	42	16	42
Groundwater (7)	36	27	33	4	37	81	13	6
Groundwater (8)	57	40	3	0	3	83	13	4
Groundwater (9)	12	3	83	2	85	71	3	26
Groundwater (10)	10	8	81	1	82	4	22	74
						I I		

Anions (-)

Practice Example for Piper Plot

Solution

Source	Ca ²⁺	Mg ²⁺	Na+	K +	Na+ + K+	HCO ₃ -	SO4 ²⁻	Cŀ
Precipitation (1)	67	12	15	6	21	0	90	10
Precipitation (2)	8	19	72	1	73	0	15	85
Sea water (3)	3	17	78	2	80	0	9	91
River water (4)	66	13	19	2	21	77	10	13
River water (5)	40	19	40	1	41	22	55	23
Groundwater (6)	59	14	25	2	27	42	16	42
Groundwater (7)	36	27	33	4	37	81	13	6
Groundwater (8)	57	40	3	0	3	83	13	4
Groundwater (9)	12	3	83	2	85	71	3	26
Groundwater (10)	10	8	81	1	82	4	22	74

Blue = seawater Green = river water Brown = precipitation Purple = GW

purple square	= 5
purple triangle	= 8
purple star	= 10

0

100

Data Objectives:

- 1. Construct calibration curves
- 2. Calculate linear regression statistics, including analytical error
- 3. Convert raw data to concentrations
- 4. Plot water chemistry to highlight similarities and differences between water sources