Lectures 10/11: Redox Reactions

Determining Oxidation States

- 1. An element bonded to itself has an oxidation state of zero (supercedes the other rules)
- 2. Hydrogen (H) is always +1
- 3. Oxygen (O) is always -2
- 4. The sum of the oxidation states of all elements in the compound must add up to the total charge on the compound

Examples: Ca²⁺, SO₄²⁻, H₂S, Fe²⁺, Fe(OH)₃

Redox (oxidation – reduction) reactions

The transfer of electrons from one chemical species to another; coupled oxidation and reduction

Oxidation – the loss of one or more electrons by a chemical species $A^0 \rightarrow A^+ + e^-$ Reduction – the gain of one or more electrons by a chemical species $B^0 + e^- \rightarrow B^-$

Reductant – aka "reducing agent"; a species that donates electrons to another species to become oxidized *Oxidant* – aka "oxidizing agent"; a species that accepts electrons from another species to become reduced *reductants donate electrons to oxidants

The transfer of electrons in a redox reaction can be represented by half-reactions:

Oxidation half-reaction:	$A^0 \rightarrow A^+ + e^-$
Reduction half-reaction:	$B^0 + e^- \rightarrow B^-$
Full reaction:	$\mathbf{A}^0 + \mathbf{B}^0 \rightarrow \mathbf{A}^+ + \mathbf{B}^-$

Real example:	
Oxidation:	$^{1}/_{2}$ H ₂ \rightarrow H ⁺ + e-
Reduction:	$\mathrm{Fe}^{3+} + \mathrm{e} \rightarrow \mathrm{Fe}^{2+}$
Full reaction:	$^{1}/_{2}$ H ₂ + Fe ³⁺ \rightarrow H ⁺ + Fe ²⁺

- Redox pairs: H^+/H_2 ; Fe^{3+}/Fe^{2+}
- *Importantly*, half-reactions must always balance each other so that there is no net production or consumption of electrons
- There is no such thing as a free electron in solution! Electrons are directly transferred from one chemical species to another
- Each half-reaction has a second complimentary half-reaction

Steps for Balancing Redox Reactions

- 1. Determine the oxidation state of each element in the equation and identify which species are losing or gaining electrons
 - a. For nearly all compounds, O = -2 and H = +1
 - b. The oxidation state of a pure substance (e.g. Fe, O₂, H₂) equals 0 (e- shared equally)
- 2. Write each half-reaction and balance the elements that are gaining or losing electrons
- 3. Add the appropriate number of electrons to each half-reaction needed to account for the changes in oxidation state

- 4. Balance oxygen in each half-reaction by adding H₂O
- 5. Balance hydrogen in each half-reaction by adding H^+
- 6. Check charge balance and mass balance for each half-reaction
- 7. Scale the half-reactions so that the number of electrons being transferred are equal
- 8. Add the equations and cancel the common terms

Special case: Basic conditions

Under basic conditions (pH > 7), protons are only present in very low concentrations. Therefore, we balance the reaction with hydroxide ions (OH⁻). To balance a reaction in basic conditions, follow the same steps as above but include a final step:

9. Add enough OH⁻ ions to each side of the equation to neutralize the H⁺ ions. The H⁺ and OH⁻ combine to form water, and the excess OH⁻ ions are left on the other side of the equation. Cancel out extra water molecules. Check for charge and mass balance.

Examples:

(1)	Oxidation of ferrous iron to ferric iron by oxygen gas:		en gas:	$Fe^{2+} + O_2 \rightarrow Fe^{3+} + H_2O$			
1.	$Fe(II), O(0) \rightarrow Fe(III), O(-2)$						
2.	$Fe^{2+} \rightarrow Fe^{3+}$	and	$O_2 \rightarrow$	$2 H_2O$			
3.	$Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}$	and	$O_2 + 4 e^- \rightarrow 2 H_2O$				
4.	$Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}$	and	$O_2 + 4$	$e^{-} \rightarrow 2 H_2O$	(oxygens already balanced)		
5.	$Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}$	and		$-O_2 + 4 e^- \rightarrow$			
6.	Check!						
7.	$4 \operatorname{Fe}^{2+} \rightarrow 4 \operatorname{Fe}^{3+} + 4 \operatorname{e}^{-}$	and	$4 H^{+} +$	$-O_2 + 4 e^- \rightarrow$	2 H ₂ O		
8.	$4 \text{ H}^+ + 4 \text{ Fe}^{2+} + \text{O}_2 \rightarrow 4 \text{ Fe}^{3+} + 2 \text{ H}_2\text{O}$						
(2)	Reduction of ferric hydroxide w	vith acet	ate:	$Fe(OH)_3 +$	$CH_3COO^- \rightarrow Fe^{2+} + HCO_3^-$		
	$Fe(III), C(0) \rightarrow Fe(II), C(IV)$						
	$Fe(OH)_3 \rightarrow Fe^{2+}$		and	•	$\rightarrow 2 \text{ HCO}_3^-$		
	$Fe(OH)_3 + 1 e \rightarrow Fe^{2+}$		and	•	\rightarrow 2 HCO ₃ ⁻ + 8 e ⁻		
	$Fe(OH)_3 + 1 e \rightarrow Fe^{2+} + 3H_2O$		and	-	$H_3COO^- \rightarrow 2 HCO_3^- + 8 e^-$		
	$3\mathrm{H}^{+} + \mathrm{Fe}(\mathrm{OH})_{3} + 1 \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} +$	$3H_2O$	and	$4 H_2O + C_2$	$H_3COO^- \rightarrow 2 HCO_3^- + 8 e^- + 9 H^+$		
	Check!						
					+ CH ₃ COO ⁻ \rightarrow 2 HCO ₃ ⁻ + 8 e ⁻ + 9 H ⁺		
8.	8. $15 \text{ H}^+ + 8 \text{ Fe}(\text{OH})_3 + \text{CH}_3\text{COO}^- \rightarrow 8 \text{ Fe}^{2+} + 20 \text{ H}_2\text{O} + 2 \text{ HCO}_3^-$						
					0		
(3)	Oxidation of silver by zinc in ba	asic solu	ition:	Ag	$g^0 + Zn^{2+} \rightarrow Ag_2O + Zn^0$		
	$Ag(0), Zn(II) \rightarrow Ag(I), Zn(0)$			2.	0		
	$2 \text{ Ag}^0 \rightarrow \text{Ag}_2\text{O}$		and	$Zn^{2+} \rightarrow Zn$			
	$2 \operatorname{Ag}^{0} \rightarrow \operatorname{Ag}_{2}O + 2 e^{-1}$			$Zn^{2+} + 2e^{-}$			
	$H_2O + 2 Ag^0 \rightarrow Ag_2O + 2 e^-$		and	$Zn^{2+} + 2e^{-}$			
	$H_2O + 2 Ag^0 \rightarrow Ag_2O + 2 e^- + 2$	2 H ⁺	and	$Zn^{2+} + 2e^{-}$	$\rightarrow Zn^{\circ}$		
	Check!						
	Electrons already balanced	_ 0 _					
	$H_2O + 2 Ag^0 + Zn^{2+} \rightarrow Ag_2O + Zn^0 + 2 H^+$						
9.	9. $2 \text{ OH}^- + \text{H}_2\text{O} + 2 \text{ Ag}^0 + \text{Zn}^{2+} \rightarrow \text{Ag}_2\text{O} + \text{Zn}^0 + 2 \text{ H}^+ + 2 \text{ OH}^-$						
$\Rightarrow 2 \text{ OH}^- + 2 \text{ Ag}^0 + \text{Zn}^{2+} \Rightarrow \text{Ag}_2\text{O} + \text{Zn}^0 + \text{H}_2\text{O}$							

- (4) Reduction of ferric iron with formaldehyde in <u>basic solution</u>: $Fe^{3+} + CH_2O \rightarrow Fe^{2+} + CO_2$ 1. $Fe(III), C(0) \rightarrow Fe(II), C(IV)$ 2. $Fe^{3+} \rightarrow Fe^{2+}$ and $CH_2O \rightarrow CO_2$ 3. $Fe^{3+} + 1 e^- \rightarrow Fe^{2+}$ and $CH_2O \rightarrow CO_2 + 4 e^-$ 4. $Fe^{3+} + 1 e^- \rightarrow Fe^{2+}$ and $H_2O + CH_2O \rightarrow CO_2 + 4 e^-$ 5. $Fe^{3+} + 1 e^- \rightarrow Fe^{2+}$ and $H_2O + CH_2O \rightarrow CO_2 + 4 e^- + 4 H^+$
 - 6. Check!
 - 7. $4 \operatorname{Fe}^{3+} + 4 \operatorname{e}^{-} \rightarrow 4 \operatorname{Fe}^{2+}$ and $H_2O + CH_2O \rightarrow CO_2 + 4 \operatorname{e}^{-} + 4 \operatorname{H}^{+}$
 - 8. 4 Fe^{3+} + H₂O + CH₂O \rightarrow 4 Fe^{2+} + CO₂ + 4 H⁺
 - 9. **4 OH**⁻ + 4 Fe³⁺ + H₂O + CH₂O \rightarrow 4 Fe²⁺ + CO₂ + 4 H⁺ + 4 **OH**⁻
 - $\rightarrow 4 \text{ OH}^- + 4 \text{ Fe}^{3+} + \text{H}_2\text{O} + \text{CH}_2\text{O} \rightarrow 4 \text{ Fe}^{2+} + \text{CO}_2 + 4 \text{ H}_2\text{O}$
 - $\rightarrow 4 \text{ OH}^- + 4 \text{ Fe}^{3+} + \text{CH}_2\text{O} \rightarrow 4 \text{ Fe}^{2+} + \text{CO}_2 + 3 \text{ H}_2\text{O}$

Implications: The reactants and products of a redox reaction will impact whether the reaction is thermodynamically favorable.

II. Electrochemistry and Redox Reactions

Question: how do we determine whether a system is reducing or oxidizing? That is, how do we know which way redox reactions will go?

Reduction potential (E) is a measure of the tendency for a half-reaction, $Ox + e^- \rightarrow Red$, to occur

- In other words, the tendency of a chemical species to acquire electrons and become reduced
- Aka redox potential, oxidation-reduction potential (ORP), Eh
- Measured as voltage; proportional to the activity of electrons, represented as $pe = -log(a_{e})$
- The activity of the electron represents the tendency for a system to provide electrons

Standard reduction potential (E^0) is the tendency for any half-reaction, $Ox + e^- \rightarrow Red$, to occur at standard conditions ($E^\circ = E$ at standard conditions)

- Standard conditions: for 1 M of a species at standard temperature and pressure
- By convention, written as $Ox + e^- \rightarrow Red$; e.g., $Fe^{3+} + e^- \rightarrow Fe^{2+}$
- It is impossible to measure e- in a single half-reaction, so we measure e- transfer between two half-reactions (specifically, one half-reaction relative to a reference state)
- Electrochemical cells (see lecture notes); E measured relative to standard hydrogen electrode where by convention $E^0 = 0$ V for the half-reaction $H^+ + e^- \rightarrow \frac{1}{2} H_2$

Measuring E:

Voltage is related to the activity of electrons ($pe = -log(a_e)$) by the following equation:

$$pe = \frac{F}{2.303RT}Eh$$

 $\label{eq:F} \begin{array}{l} F = Faraday's \ constant, \ R = gas \ constant, \ T = temperature \\ At \ 25^{\circ}C: \quad Eh = 0.059 \ pe \ where \ 0.059 = 2.303 \times 8.314 \ J \ K^{-1} \ mol^{-1} \times 298 \ K \div 96,485 \ coulomb \ mol^{-1} \end{array}$

Do we need to set up an electrochemical cell to determine electric potential? No! Use thermodynamics!

Reaction:

Fe(3+) + ½ H₂ → Fe(2+) + H⁺

$$\Delta G_r = \Delta G_r^0 + RT ln \left(\frac{a_{Fe(2+)} a_{H+}}{a_{Fe(3+)} P_{H2}^{\frac{1}{2}}} \right)$$

Since $a_{H^+} = P_{H2} = 1$ for the SHE:

$$\Delta G_r = \Delta G_r^0 + RT ln\left(\frac{a_{Fe(2+)}}{a_{Fe(3+)}}\right)$$

,

、

But, this still doesn't get us to Eh. We need this relationship:

$$\Delta G_r = -nFE$$

n – number of electrons transferred in the stoichiometric reaction

F – Faraday's constant

E – electrical potential relative to the SHE

Very important

- The sign of E (+ or -) is established by convention
- To calculate E for the half reaction of interest, write the reaction with the electrons on the left side of the equation; the other half-reaction is $\frac{1}{2}$ H₂ \rightarrow H⁺ + e⁻

We combined these equations to derive the Nernst equation:

$$E = E^{0} + \frac{RT}{nF} \ln \left(\frac{a_{Fe(3+)}}{a_{Fe(2+)}} \right)$$

Generalized to any half-reaction:

$$E = E^{0} + \frac{RT}{nF} \ln\left(\frac{a_{oxidized species}}{a_{reduced species}}\right)$$

Also converted from ln to log:

$$E = E^{0} + \frac{2.303RT}{nF} \log\left(\frac{a_{oxidized species}}{a_{reduced species}}\right)$$

At standard conditions:

$$E = E^{0} + \frac{0.059}{n} \log\left(\frac{a_{oxidized \ species}}{a_{reduced \ species}}\right)$$

 $*E^{\circ} = Eh$ at standard conditions

• can be calculated from thermodynamic data for the half-reaction

•
$$\Delta G_r^0 = -nFE^\circ \rightarrow E^\circ = -\Delta G_r^0/nF$$

For example: $Fe^{3+} + 1 e^{-} \rightarrow Fe^{2+}$

$$E^{0}(V) = -\frac{\Delta G_{r}^{0}}{nF} = -(\Delta G_{Fe(2+)}^{0} - \Delta G_{Fe(3+)}^{0})/(F)$$

 $\Delta G^{\circ}(Fe(2+)) = -78.87 \text{ kJ/mol}$ $\Delta G^{\circ}(Fe(3+)) = -4.6 \text{ kJ/mol}$ F = 96.485 kJ/volt $E^{0} \sim 0.76 \text{ V}$

And the Eh of the Fe(3+)-Fe(2+) redox pair in a system can be calculated as:

$$Eh = 0.76 + 0.059\log\left(\frac{a_{Fe(3+)}}{a_{Fe(2+)}}\right)$$

Cool environmental redox reactions! (lecture slides)

Summary of what we learned today:

- 1. Redox reactions involve the transfer of electrons from one species to another
 - a. A species that loses its electrons is oxidized
 - b. A species that gains electrons is reduced
- 2. Electron potential is a measure of whether a system tends to give up or acquire electrons
- 3. The electron potential of a redox couple can be calculated relative to the standard hydrogen electrode
 - a. In an electrochemical cell, electrons flow from the cell with high a_{e-} to the cell with low a_{e-}
 - b. Electrical potential (E) represents the tendency of a system to gain or lose e
 - c. Electrical potential of a half-reaction is determined relative to the Standard Hydrogen Electrode (0.5 H₂ \rightarrow H⁺ + e⁻) to yield Eh
 - d. The energy generated from a chemical reaction is proportion to Eh:

$$G_r = nFEh$$

e. The electrical potential of a half-reaction is calculated as:

$$Eh = E^{0} + \frac{RT}{nF} \ln \left(\frac{a_{oxidized species}}{a_{reduced species}} \right)$$

f. Examples of environmentally-relevant redox-sensitive elements include Hg, Cr, As, U

III. Eh-pH diagrams (related to pe-pH diagrams)

Eh-pH diagrams display stability fields for chemical species under different Eh and pH conditions. The stability field for a given chemical species is determined by electric potential (Eh) and proton activity (pH) and is calculated using thermodynamic equations. These diagrams can be used to determine what chemical reactions *should* take place but not necessary which reactions *are* taking place.

- 1. Plots electric potential (Eh) versus pH of a system similar to PT diagrams but with different axes
- 2. Eh > 0 indicates oxidizing conditions while Eh < 0 indicates reducing conditions
- 3. pH < 7 indicates acidic conditions and pH > 7 indicates basic conditions
- 4. Any point on the diagram will indicate the most thermodynamically stable (and theoretically most abundant) chemical species under given Eh and pH conditions for a given temperature and activity
- 5. Lines represent where species on either side of the line have equal activities
- 6. All environmental systems are constrained by the stability of liquid water.