REDOX REACTIONS

EAR 419/619 Aqueous Geochemistry

Metallic Mn – equal number of protons (+) and electrons (-) **Oxidation state = 0**

Mn²⁺ – gives up 2 electrons to create charge deficit **Oxidation state = +2** 23 electrons 25 protons 30 neutrons

Mn³⁺ – gives up 3 electrons to create charge deficit **Oxidation state = +3** 22 electrons 25 protons 30 neutrons

Mn⁴⁺ – gives up 4 electrons to create charge deficit **Oxidation state = +4** 21 electrons 25 protons 30 neutrons

Rules for determining the oxidation state of an element in a compound:

- An element bonded to itself has an oxidation state of zero (supercedes the other rules)
- 2. Hydrogen (H) is always +1
- 3. Oxygen (O) is always -2
- The sum of the oxidation states of all elements in the compound must add up to the total charge on the compound

Examples: O₂ gas, CO₂, CH₄, CH₂O (organic matter), SeO₄²⁻

Redox (oxidation – reduction) reactions

Definition: Transfer of electrons from the electron donor (reducing agent) to the electron acceptor (oxidizing agent)

Oxidation Is Loss of electrons Reduction Is Gain of electrons

Oxidation: $A^0 \rightarrow A^+ + e^-$

Reduction: B⁺ + e- \rightarrow B⁰

STANDARD HYDROGEN ELECTRODE (SHE) the redox reference state

- The electric potential of a halfreaction is determined relative to a reference state (SHE)
- The H₂/H+ half-reaction at 25°C with $P_{H2} = 1$ atm and $a_{H+} = 1$
- Electric potential of SHE = 0 by convention

Voltage is directly proportional to the activity of electrons

Redox Potential of Common Redox Rxn.

- The energy generated from a reaction (ΔG) depends on the difference in reduction potential between the edonor and acceptor
- If E⁰ > 0, then the half-reaction is favorable
 - Reactant easily accepts e- to be reduced
 - High reduction potential
- If E⁰ < 0, then the half-reaction is unfavorable
 - Reaction would rather proceed in the opposite direction
 - that is, the product would rather give up its electrons

Reaction	$E^{\circ}(\mathbf{V})$
$Ag^+ + e^- = Ag^0_{(c)}$	0.797
$Al^{3+} + 3e^- = Al^0_{(s)}$	-1.686
$AsO_4^{3-} + 2H^+ + 2e^- = AsO_3^{3-} + H_2O$	0.156
$HOBr + H^+ + 2e^- = Br^- + H_2O$	1.338
$2HOBr + 2H^+ + 2e^- = Br_{2(aq)} + 2H_2O$	1.581
$BrO_3^- + 6H^+ + 6e^- = Br^- + 3H_2O$	1.437
$CO_{2(g)} + 8H^+ + 8e^- = CH_{4(g)} + 2H_2O$	0.170
$6CO_{2(g)} + 24H^+ + 24e^- = glucose + 6H_2O$	-0.012
$CO_{2(g)} + 4H^+ + 4e^- = CH_2O + H_2O$	-0.071
$CO_{2(g)} + H^+ + 2e^- = HCOO^-$	-0.285
$CH_2O + 2H^+ + 2e^- = CH_3OH$	0.236
$CH_2O + 4H^+ + 4e^- = CH_{4(g)} + H_2O$	0.410
$CH_3OH + 2H^+ + 2e^- = CH_{4(g)} + H_2O$	0.584
$\mathrm{Cl}_{2(\mathrm{aq})} + 2e^{-} = \mathrm{Cl}^{-}$	1.392
$HOCl + H^+ + 2e^- = Cl^- + H_2O$	1.481
$ClO_2 + 4H^+ + 5e^- = Cl^- + 2H_2O$	1.495
$ClO_{2}^{-} + 4H^{+} + 4e^{-} = Cl^{-} + 2H_{2}O$	1.609
$ClO_3^- + 6H^+ + 6e^- = Cl^- + 3H_2O$	1.446
$Co^{3+} + e^- = Co^{2+}$	1.953
$CrO_4^{2-} + 8H^+ + 3e^- = Cr^{3+} + 4H_2O$	1.514
$\mathrm{Cu}^{2+} + e^{-} = \mathrm{Cu}^{+}$	0.160
$Cu^{2+} + 2e^{-} = Cu^{0}_{(s)}$	0.339
$\mathrm{Fe}^{3+} + e^- = \mathrm{Fe}^{2+}$	0.769
$Fe^{2+} + 2e^{-} = Fe^{0}_{(s)}$	-0.441
$2H^+ + 2e^- = H_{2(g)}$	0.000
$2H^+ + 2e^- = H_{2(aq)}$	-0.092
$2Hg^{2+} + 2e^{-} = Hg_2^{2+}$	0.908
$Hg_2^{2+} + e^- = 2Hg_{(1)}$	0.794
$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$	1.508
$MnO_{2(s)} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_2O$	1.227
$\mathrm{Mn}^{3+} + e^- = \mathrm{Mn}^{2+}$	1.505
$Ni^{2+} + 2e^- = Ni^0_{(s)}$	-0.236
$O_{2(g)} + 4H^+ + 4e^- = 2H_2O$	1.226
$O_{2(aq)} + 4H^+ + 4e^- = 2H_2O$	1.268
$O_{2(aq)} + 2H^+ + 2e^- = H_2O_{2(aq)}$	0.777
$H_2O_{2(aq)} + 2H^+ + 2e^- = 2H_2O$	1.758
$Pb^{4+} + 2e^- = Pb^{2+}$	0.845
$Pb^{2+} + 2e^{-} = Pb^{0}_{(s)}$	-0.126
$SO_4^{2-} + 10H^+ + 8e^- = H_2S_{(aq)} + 4H_2O$	0.299
$SO_4^{2-} + 9H^+ + 8e^- = HS^- + 4H_2O$	0.248
$SO_4^{2-} + 2H^+ + 2e^- = SO_3^{2-} + H_2O$	0.801
$SeO_4^{2-} + 4H^+ + 2e^- = H_2SeO_3 + H_2O$	1.071
$Zn^{2+} + 2e^{-} = Zn^{0}_{(s)}$	-0.760

The Redox Ladder in Biology

- The energy generated from a reaction (ΔG) depends on the difference in reduction potential between the edonor and acceptor
- If E⁰ > 0, then the half-reaction is favorable
 - Reactant easily accepts e- to be reduced
 - High reduction potential
- If E⁰ < 0, then the half-reaction is unfavorable
 - Reaction would rather proceed in the opposite direction
 - that is, the product would rather give up its electrons

Redox reactions in the environment

Image by Ohio DNR

stanford.edu

Various redox-active species can oxidize or reduce Uranium

Ginder-Vogel and Fendorf (2008)

Utilizing U redox to mitigate groundwater spills

www.bio.anl.gov

Arsenic contamination in groundwater in southeast Asia is a major health concern

USEPA: As < 10 ug/L

Erban et al. 2013 PNAS

Redox reactions impact As mobility

- As(V) binds strongly to Fe-oxides at low to neutral pH
- Microbes can reduce As(V) to As(III) and release it into solution

Huang et al. (2011) ES&T

MERCURY

Hg(II) Forms bioavailable methylmercury

Fossil fuel combustion contributed ~66% of anthropogenic global Hg emission (mostly from coal) in 2000

Eh-pH diagrams

- constructed using thermodynamic data
- predict the most stable form of an element for a given system under certain Eh and pH conditions
- Changes from one species to another represent redox or acid-base reactions

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Geochemical species depend on the input parameters

Fe-O-H₂O system at 25°C with hematite and magnetite as the iron oxide phases

Geochemical species depend on the input parameters

Fe-O-H₂O-CO₂ system at 25°C with hematite and magnetite as the iron oxide phases

Stability diagram for dissolved sulfur species

Eh-pH Stability Diagrams:

- Any point on the diagram will indicate the most thermodynamically stable (and theoretically most abundant) chemical species under given Eh and pH conditions for a given temperature and activity
- The stability fields displayed in the graph are calculated from thermodynamic equations and depend on which species are considered and their activities (or fugacities)