REDOX REACTIONS

EAR 419/619 Aqueous Geochemistry

Metallic Mn – equal number of protons (+) and electrons (-) **Oxidation state = 0**

 Mn^{2+} – gives up 2 electrons to create charge deficit **Oxidation state = +2**

25 protons 30 neutrons 23 electrons

 Mn^{3+} – gives up 3 electrons to create charge deficit **Oxidation state = +3**

25 protons 30 neutrons 22 electrons

 Mn^{4+} – gives up 4 electrons to create charge deficit **Oxidation state = +4**

25 protons 30 neutrons 21 electrons

Rules for determining the oxidation state of an element in a compound:

- 1. An element bonded to itself has an oxidation state of zero (supercedes the other rules)
- 2. Hydrogen (H) is always +1
- 3. Oxygen (O) is always -2
- 4. The sum of the oxidation states of all elements in the compound must add up to the total charge on the compound

Examples: O_2 gas, CO_2 , CH₄, CH₂O (organic matter), SeO₄²⁻

Redox (oxidation – reduction) reactions

Definition: Transfer of electrons from the electron donor (reducing agent) to the electron acceptor (oxidizing agent)

Oxidation **I**s **L**oss of electrons **R**eduction **I**s **G**ain of electrons

Oxidation: $A^0 \rightarrow A^+ + e^-$

Reduction: $B^+ + e^- \rightarrow B^0$

STANDARD HYDROGEN ELECTRODE (SHE) the redox reference state

- The electric potential of a halfreaction is determined relative to a reference state (SHE)
- The $H₂/H+$ half-reaction at 25 $^{\circ}$ C with $P_{H2} = 1$ atm and $a_{H+} = 1$
- Electric potential of SHE = 0 *by convention*

Voltage is directly proportional to the activity of electrons

Redox Potential of Common Redox Rxn.

- The energy generated from a reaction (ΔG) depends on the difference in reduction potential between the edonor and acceptor
- If $E^0 > 0$, then the half-reaction is favorable
	- Reactant easily accepts e- to be reduced
	- High reduction potential
- If E^0 < 0, then the half-reaction is unfavorable
	- Reaction would rather proceed in the opposite direction
	- that is, the product would rather give up its electrons

The Redox Ladder in Biology

- The energy generated from a reaction (ΔG) depends on the difference in reduction potential between the edonor and acceptor
- If $E^0 > 0$, then the half-reaction is favorable
	- Reactant easily accepts e- to be reduced
	- High reduction potential
- If E^0 < 0, then the half-reaction is unfavorable
	- Reaction would rather proceed in the opposite direction
	- that is, the product would rather give up its electrons

Redox reactions in the environment

Image by Ohio DNR

stanford.edu

Various redox-active species can oxidize or reduce Uranium

Utilizing U redox to mitigate groundwater spills

www.bio.anl.gov

Arsenic contamination in groundwater in southeast Asia is a major health concern

USEPA: As < 10 ug/L erban et al. 2013 PNAS

Redox reactions impact As mobility

- As(V) binds strongly to Fe-oxides at low to neutral pH
- Microbes can reduce As(V) to As(III) and release it into solution

Huang et al. (2011) ES&T

MERCURY 2 e-

Hg(II) Forms bioavailable methylmercury

Fossil fuel combustion contributed ~66% of anthropogenic global Hg emission (mostly from coal) in 2000

Eh-pH diagrams

- constructed using thermodynamic data
- predict the most stable form of an element for a **given system** under certain Eh and pH conditions
- Changes from one species to another represent redox or acid-base reactions

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Fe-O-H₂O system at 25°C with ferrihydrite and Fe(OH)₂ as the iron oxide phases

Geochemical species depend on the input parameters

Fe-O-H₂O system at 25°C with hematite and magnetite as the iron oxide phases

Geochemical species depend on the input parameters

Fe-O-H₂O-CO₂ system at 25°C with hematite and magnetite as the iron oxide phases

Stability diagram for dissolved sulfur species

Eh-pH Stability Diagrams:

- Any point on the diagram will indicate the most thermodynamically stable (and theoretically most abundant) chemical species under given Eh and pH conditions for a given temperature and activity
- The stability fields displayed in the graph are calculated from thermodynamic equations and depend on **which species are considered** and their **activities** (or fugacities)