Lecture 12/13: Kinetics of Water-Rock Interaction

Kinetics is the study of the *rates* of chemical reactions, factors affecting rates, and mechanisms by which reactions proceed

• Reaction rates are determined by a series of chemical reaction and transport steps *Reaction* – rates of bond formation and breakage

Transport – physical movement of species to and from the site of reaction

Elementary Reactions – proceed in one step *Multistep reactions* – a series of elementary steps that

What are the reaction and transport elementary steps involved in the multistep dissolution of calcite?

$$
CaCO_{3(s)} + 2H^{+} \rightarrow CO_{2(g)} + Ca^{2+} + H_{2}O
$$

- 1) breaking $CaCO₃$ bonds
- 2) diffusion of ions away from mineral surface and into solution
- 3) conversion of CO3(2-) to HCO3(-)
- 4) conversion of HCO3(-) to H2CO3
- $5)$ CO₂ degassing
- 6) formation of water

One of these will be the *rate-determining step* – the slowest step in a multistep reaction that determines the rate of the overall reaction

Outline

- **(1) Using** *rate equations* **to predict concentrations of reactants and products over time**
- **(2) Basic theory of how chemical reactions occur**
- **(3) Effects of physical factors on rates and rate constants**

A *rate equation* relates the change in concentration of a species versus time to species concentration

For the reaction: $A + B \rightarrow M$ The rate equation is: $r = d[M]/dt = k[A]^\alpha[B]^\beta$

Rate ($r = d[M]/dt$ **):** the change in concentration of species M with respect to time (*t*) **Rate constant (***k***):** time-independent value that relates rate to concentrations of A and B **Partial orders of reaction (exponents):** dependence of r on the concentration of each species

- Zeroth-order rate is independent of species concentration
- First-order rate is proportional to the concentration of a species (X_i)
- Second-order rate is proportional to the squared concentration of a species $(X_i²)$
- Third-order, etc.

Reaction Order – described by the sum of the exponents; expresses the dependence of the overall reaction rate on the concentration of species involved

Examples of different reaction orders:

- 1) Oxidation of pyrite by O_2 is first-order with respect to $FeS_{2(s)}$ $-d[FeS_2]/dt = k[FeS_2]$
- 2) Oxidation of arsenite $(AsO₃³)$ by MnO₂ is second-order with respect to arsenite $-d[AsO₃³-]/dt = k[AsO₃³-]²$
- 3) Oxidation of ferrous iron on the surface of silicate minerals by O_2 is first-order with respect to each ferrous iron and O_2 (i.e. second order overall rate)

$-d[Fe^{2+}]/dt = k[Fe^{2+}][O_2]$

How can we predict concentrations of a chemical species as a function of time?

- Need to determine the value of the rate constant (k) and the orders of each reactant
- Integrate rate equations to express concentrations $[C]$ as a function of time (t) in a linear fashion
- Typically collect data of [C] vs t and use empirical fits to determine reaction order

First-Order Kinetics: rate depends linearly on the concentration of a single reactant $d[C]/dt = k[C]$

Radioactive decay is first-order with respect to the concentration of the radioactive element

The linear form of the equation, $\ln[A] = \ln[A]_0 - kt$, can be plotted as follows:

Half-life: time it takes for half of the material to decay (or react, for non-radioactive species) For first-order reactions: $t^{1/2} = (1/k) \times \ln([A]_0/0.5[A]_0) = \ln(2)/k$

Example 5.2 (Brezonik and Arnold) – see Excel sheet

Reactions can be made *pseudo-first order* by experimentally holding the concentrations of all reactants constant except for one

Oxidation of ferrous iron by oxygen gas can be described by the following rate equation: $- d[Fe^{2+}]/dt = k[Fe^{2+}]P_{O2}[OH^{-}]^2$

When the partial pressure of O_2 is held constant, and pH is buffered, the equation becomes: $-d[Fe^{2+}]/dt = k_{obs}[Fe^{2+}]$

Where $k_{obs} = kP_{O2}[OH]^2$

Plotted as $\ln[Fe^{2+}]$ versus time, we obtain $\ln[Fe^{2+}] = 6.2 - 0.045$ (t), so $k_{obs} = 0.045$

Since we know that $k_{obs} = kP_{O2}[OH]^2$, and we know P_{O2} and [OH] for our controlled system, we can determine *k* for the initial reaction.

Second-order kinetics

For a second-order reaction, $A + B \rightarrow P$, Rate = $-d[A]/dt = -d[B]/dt = d[P]/dt = k_2[A][B]$

We represent $d[A]$ and $d[B]$ as $d[x]$ (x = the concentration of each species reacted at time t): $dx/dt = k_2[A][B] = k_2([A]_0 - x)([B]_0 - x)$

The integrated, linearized form of this equation is as follows:

 $ln([A]/[B]) = k_2([A]_0 - [B]_0)t + ln([A]_0/[B]_0)$

For a second-order reaction, $2 \text{ A} \rightarrow \text{ P}$, we represent $d[A]$ as $d[x]$:

 $dx/dt = k_2[A]^2 = k_2([A]_0 - x)^2$

The integrated, linearized form of this equation is as follows:

$$
(1/[A]) = k_2t + (1/[A]_0)
$$

Zero-order reactions

Zero-order reactions are independent of concentration, such that $-d[A]/dt = k_0[A]^0 = k_0$ The integrated form of this equation is as follows: $[A] = [A]_0 - k_0t$

Zero-order reactions occur when something other than concentration (such as binding to active sites on enzymes or minerals) controls the rate of reaction; only occurs for multistep reactions

Kinetics of mineral dissolution: measure the release of dissolved species as a function of time in well-mixed batch reactors

To determine the rate of reaction, measure product formation over time, such as release of Si from glass dissolution; here, slope of each line = *rate of reaction*

Or, plot the rate of reaction (d[Si]/dt) as a function of a reactant concentration (rate of dissolution vs pH)

Kinetics becomes ever more complicated beyond second-order reaction kinetics. One complicating factor is *reversible reactions*, where the product is converted back to the reactant at a significant rate.

- The reverse reaction, e.g., $[P] \rightarrow [A]$, must be considered when a reaction approaches equilibrium
- The reaction orders described above are calculated far from equilibrium (back reaction is negligible)

Effects of temperature on reaction rates

- Rates are often strongly temperature dependent
- Rate constants are independent of *time*, but not temperature (or other physical factors)
- Rate constants vary as a function of temperature according to the *Arrhenius equation*

$$
k = Ae^{-E_a/RT}
$$

A = empirical pre-exponential factor, E_a = activation energy, R = gas constant, T = temperature

The activation energy (E_a) is the energy that must be input into a system to drive the chemical reaction

An *Arrhenius plot* can be used to determine the activation energy (Ea) of a chemical reaction:

Example: Albite (feldspar) dissolution

- 1) Measure *k* for albite dissolution at different temperatures
- 2) Plot *k* as a function of inverse temperature (in Kelvin)

$$
\ln k = \ln(A) - (E_a/R)^*(1/T)
$$

$$
E_a = 16 \pm 1 \text{ kcal mol}^{-1}
$$