Lecture 2: Chemistry and Chemical Reactions

Oxidation state

• Number of electrons lost (or gained) by an element when forming an ion or chemical bond

Determining the oxidation state of an element in a compound:

- 1. An element bonded to itself has an oxidation state of zero (supersedes the other rules)
- 2. Hydrogen (H) is always +1
- 3. Oxygen (O) is always -2
- 4. The sum of the oxidation states of all elements in the compound must add up to the total charge on the compound

Examples: O₂ gas, CO₂, CH₄, CH₂O (organic matter), SO₄²⁻

Charge Balance

- Water contains positively charged (cations) and negatively charged (anions) dissolved ions
- Charge balance Positive and negative charges <u>must</u> cancel each other out
- Solute charge is represented in terms of equivalents per volume (e.g., eq/L or meq/L for milliequivalents per liter)
- eq/L = mol/L x solute charge

Unit Conversion

One of the most important skills you will ever learn is how to convert between different units.

Examples:

- (a) What is the molarity (mol L^{-1}) of Mg^{2+} in a solution prepared as 50 mg L^{-1} MgCl₂·6H₂O?
- (b) What is the molarity (mol L^{-1}) of **Cl**⁻ in a solution prepared as 50 mg L^{-1} MgCl₂·6H₂O?

First, what is the molecular mass (g/mol) of MgCl₂-6H₂O? 203.31 g/mol

- (c) $(50 \text{ mg MgCl}_2-6H_2O / L)(1 \text{ g} / 1000 \text{ mg})(1 \text{ mol MgCl}_2-6H_2O / 203.31 \text{ g MgCl}_2-6H_2O)(1 \text{ mol Mg} / 1 \text{ mol MgCl}_2-6H_2O) = 2.5 \text{ x} 10^{-4} \text{ mol/L}$
- (d) (50 mg MgCl2-6H2O / L)(1 g / 1000 mg)(1 mol MgCl2-6H2O / 203.31 g MgCl2-6H2O)(2 mol Cl / 1 mol MgCl2-6H2O) = 4.9 x 10^-4 mol/L

Are these charge balanced? Yes! Cl⁻ has one equivalent per mol (eq/mol) and Mg²⁺ has two equivalents per mol.

- (e) $(4.9 \times 10^{-4} \text{ mol/L Cl-}) \times (1 \text{ eq/mol}) = 4.9 \times 10^{-4} \text{ eq/L}$
- (f) $(2.5 \times 10^{-4} \text{ mol/L Mg}^{2+}) \times (2 \text{ eq/mol}) = 4.9 \times 10^{-4} \text{ eq/L}$

*note that the 2.5 and 4.9 are rounded, so it's actually like 2.45

Geochemical Models

Steps to build a model:

- 1. Define the system
- 2. Define the identity and quantity of the constituents (reactants and products) in the system
- 3. Write a balanced equation for the chemical reaction of interest

1. Define the system

- a. Closed System composition is fixed; no mass transfer (box)
- b. Open System mass can enter and leave the system via fluxes (box + arrows)
- 2. Define the constituents
 - a. Example constituents (ensure they are expressed in comparable units)
 - i. Water
 - ii. Minerals
 - iii. Gases (defined by their partial pressure)
 - iv. Solutes (defined by their concentration; e.g., mass/volume)
- 3. Write a balanced equation for the chemical reaction of interest

Reactants \rightarrow Products $aA + bB \rightarrow cC + dD$

- a. Start with an unbalanced equation of reactants and products
- b. Make an element inventory
- c. Adjust the numbers in front of the reactants and products until balanced on either side of the arrow
- d. Assuming the reaction takes place with water as a solvent, add H^+ , OH^- and H_2O as needed to balance the equation (but only if H_2O participates in the reaction)
- e. Double check for mass balance and charge balance!

Examples: NaCl --> (in water) \rightarrow Na+ + Cl-MgCl₂ \rightarrow (in water) \rightarrow Mg(2+) + 2 Cl(-) Fe(3+) + H₂O \rightarrow FeOOH (then balance the elements...) Fe(3+) + 2 H2O \rightarrow FeOOH + 3 H+

Chemical Reactions

Types of chemical reactions

- 1. Dissolution/precipitation
- 2. Acid-base
- 3. Adsorption/desorption
- 4. Oxidation-reduction (redox)

*reactions can be more than one type

1. Dissolution reaction: $A_{\nu A}B_{\nu B(s)} \rightarrow \nu_A A^{qA}_{(aq)} + \nu_B B^{qB}_{(aq)}$

- $a. \quad A-element$
- b. vA stoichiometric amount of A
- c. qA charge on the ion A

Examples:

a. NaCl_(s) \rightarrow Na + Cl

b. $CaCO_{3 (s)} + CO_2 + H_2O \rightarrow Ca + HCO_3^{-1}$

2. Precipitation reaction: $v_A A^{qA}_{(aq)} + v_B B^{qB}_{(aq)} \rightarrow A_{vA} B_{vB}_{(s)}$

Examples:

a. $Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)} + H_2O \rightarrow gypsum$

3. Acid-base reaction: $HA + B \rightarrow A^- + HB^+$

Brønsted-Lowry definition: transfer of a proton from an acid (the proton donor) to a base (the proton acceptor)

Examples (which are the acid, base, conjugate acid, conjugate base?)

- a. $HCl + H_2O \rightarrow Cl^- + H_3O^+$
- b. $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
- c. $CaCO_3 + H_2SO_4 \rightarrow H_2CO_3 + Ca^{2+} + SO_4^{2-}$

4. Surface complexation reactions

- a. Adsorption the adhesion of a substance (e.g., solute) onto a surface
- b. Desorption the release of a substance from a surface into solution

$$\equiv S-O^{-} + H^{+} \rightarrow \equiv S-OH \qquad \equiv S-OH + H^{+} \rightarrow \equiv S-OH_{2}^{+}$$
$$\equiv S-K^{+} + H^{+} \rightarrow \equiv S-H^{+} + K^{+}$$

Inner-sphere complex – ion forms a chemical bond with the surface at a specific site Outer-sphere complex – electrostatic interaction between ion and charged surface; ion remains in hydration shell

- 5. Redox (oxidation-reduction) reactions
 - a. Transfer of electrons from e- donor (reducing agent) to e- acceptor (oxidizing agent) OILRIG oxidation is loss, reduction is gain

Oxidation half reaction: $A^0 \rightarrow A^+ + e^-$ Reduction half reaction: $B^0 + e^- \rightarrow B^-$