Lecture 3: Chemistry of Natural Waters

- 1. Electroneutrality and charge balance water is net neutral, so the sum of all positive charges must be matched by the sum of all negative charges; charge is measured in units of equivalent concentrations (eq/L)
 - a. Equivalent/L = m_i (ion concentration, mol/L) × z_i (ion charge)
 - i. E.g., $CaCl_2 \rightarrow Ca^{2+} + Cl^{-}$
 - ii. If there are 3 moles/L of CaCl₂, there are 6 eq/L of Ca²⁺ and of Cl⁻ (charge balance is satisfied)
 - iii. For Ca^{2+} , eq/L = (3 mol/L)*(2 eq/mol) = (+) 6 eq/L
 - iv. For Cl⁻, $eq/L = (6 \text{ mol}/L)^*(-1 \text{ eq/mol}) = (-) 6 \text{ eq}/L$
- 2. Water chemistry in the environment
 - a. Water chemistry includes pH, redox state, and dissolved and (nano)particulate constituents
 - b. pH is a measure of acidity; in natural systems pH is usually buffered by HCO₃⁻
 - i. pH = -log([H+])
 - ii. acidic waters: pH < 7 [H+] > [OH-]
 - iii. alkaline/basic waters: pH > 7 [H+] < [OH-]
 - iv. Chemical reactions that produce or consume H+ can change pH
 - 1. Produce H+ acid rain/point sources, organic acids, hydrolysis reactions
 - 2. Consume H+ weathering of carbonate rock
 - c. Redox conditions
 - i. Set by the relative abundance of e- acceptors, notably oxygen gas
 - ii. Oxic, suboxic, and anoxic describe different oxygen gas levels
 - iii. Oxidizing and reducing describe redox state
 - d. Dissolved ions
 - i. Base Cations
 - $Na^+, K^+, Ca^{2+}, Mg^{2+}$
 - Do not participate in redox reactions; limited acid-base reactions
 - Particularly dominant cations in *basic* environments
 - Rock-derived, some atmospheric
 - ii. Bicarbonate anion
 - HCO3⁻
 - important acid-base chemistry (readily gives and receives protons)
 - major component of *alkalinity* (acid-neutralizing capacity of waters)
 - Atmospheric and rock-derived

 $CO_2 + H_2O \leftrightarrow H_2CO_3^0 \leftrightarrow H^+ + HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$

- iii. Sulfate anion
 - SO_4^{2-}
 - undergoes redox reactions to form different sulfur species (e.g., H₂S)
 - Rock-derived; atmospheric inputs are important
- iv. Chloride anion
 - Cl⁻

- Non-reactive in the environment, hence a "conservative" ion
- Mostly input to surface waters from precipitation
- v. Dissolved silica (aka silicic acid)
 - $Si(OH)_4^0$
 - the silica tetrahedron that is released during weathering of silicate rocks (rock-derived)
 - Uncharged species (not an ion)
- vi. Metals (A13+, Fe2+ or Fe3+, and Mn2+ or maybe Mn3+)
 - Abundant in rocks; poorly-soluble in water
 - Typically insoluble in high pH and/or oxic environments (form oxide minerals)
 - Solubility increases in anoxic and acidic environments
- vii. Dissolved organic matter (DOM)
 - Dissolved organic carbon (DOC) the fraction of DOM consisting of C
- viii. Dissolved gases
 - O_2 (DO = dissolved oxygen), N_2 , CO_2 , CH_4
- ix. Nutrient ions
 - NH₄⁺ and NH₃ (ammonium and ammonia)
 - NO₃⁻ and NO₂⁻ (nitrate and nitrite)
 - Inorganic phosphorus (phosphate)
 - Organic N and organic P
- e. Chemistry of major reservoirs