Thermodynamics

For a given chemical reaction:

 $aA + bB \rightarrow cC + dD$ • $\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T \Delta S_{rxn}^{\circ}$ • $\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln(\frac{a_C^c a_D^d}{a_A^a a_D^b})$ • $\ln K_{eq} = ln(\frac{a_C^c a_D^d}{a_A^a a_B^b}) = \frac{-\Delta G_{rxn}^{\circ}}{RT}$ van't Hoff equation: $\ln(K_{T2}) - \ln(K_{T1}) = \frac{\Delta H_{rxn}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$

Thermodynamics continued

For a given chemical reaction:

$$aA + bB \rightarrow cC + dD$$
For $\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln(\frac{a_C^c a_D^d}{a_A^a a_B^b})$
If we define $Q = \frac{a_C^c a_D^d}{a_A^a a_B^b}$ (reaction quotient)
Then $\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln(Q)$

 K_{eq} is the Q at equilibrium

What about Activity?

Aqueous Geochemistry

Refer to the note