

Topic outline:

- 1. What is an organic compound?
- 2. Chemical bonds and chemical structures
- 3. Major categories of organic compounds
- 4. Important organic functional groups
- 5. Chemistry of organic matter in the environment
- 6. Techniques used to analyze organic matter

Organic compound: A compound containing the element C bonded to the element H (excluding carbonate compounds such as CO_2 , HCO_3^- , $CaCO_3$, FeCO₃...)

Carbon forms four bonds with other elements

The *approximate* composition of natural organic matter is CH₂O

Carbon: The building block of organic matter

- Carbon forms up to 4 covalent bonds and is typically bonded to O or H in organic matter
- Carbon compounds decompose to CO₂ (aerobic respiration) or CO₂ + CH₄ (anaerobic respiration)

Structure of Organic Compounds

Aliphatic compounds

 Straight, branched, or cyclic chains of hydrocarbons

Alkanes (saturated): single bonds

Alkenes (unsaturated): contain at least one double bond

Aromatic compounds

 Contain at least one cyclic ring with alternating double bonds (benzene); delocalized electrons

Heterocyclic compounds

 A ring that contains a heteroatom (typically N or O) that is not C

What happens when we burn organic molecules?

$"CH₂O" + O₂ \rightarrow CO₂ + H₂O$

- C-H bonds are broken
 → Energy is released
- 2) Oxygen from the air forms chemical bonds with C
- 3) Eventually, organic molecule is completely converted to CO₂ gas

Aerobic Respiration

Glucose oxidation: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$

C(+0) in organic matter is oxidized to CO₂

Major Functional Groups

N atom bonded to one or more C-H groups

Carboxyl C doubled bonded to O and single bonded to a hydroxyl group

Ester

Replaces H in carboxyl with another organic group

Phenols Hydroxyl group bonded to a benzene ring

What are functional groups?

Functional groups are specific **groups** (moieties) of atoms or bonds within molecules that are responsible for the chemical reactions of those molecules.

Carboxylic acids contain carboxyl groups

The "R" can represent any type of organic group, from CH₃ to something highly complex

Example: acetic acid (CH₃COOH)

Where does organic matter come from?

 $CO_2 + H_2O + h\nu$ $\rightarrow "CH_2O" + O_2$

- Plants harvest energy from sun to form organic molecules
- Organic molecules form plant tissue or root exudates
- Other organisms burn the organic molecules for fuel

Natural organic matter is often classified by coarse properties

Humic substances – "A general category of naturally occurring, biogenic, heterogeneous organic substances that can generally be characterized as being yellow to black in color, of high molecular weight, and refractory" – products of microbial decomposition of organic matter

Three operational definitions for humic substances:

Humin – insoluble in water under all pH conditions

Humic acids – insoluble in water at pH < 2 but soluble at higher pH; low O/C ratio **Fulvic acids** – soluble in water under all pH conditions; high O/C ratio Breakdown of organic matter is controlled by biological and mineralogical factors

Dissolved organic matter (usually measured as DOC) forms via:

- 1) Breakdown of larger, insoluble molecules (before CO₂)
- 2) Biosynthesis

DOC in soil solution

- Variable concentrations (5 to > 50 mg/L) that depend on the soil organic content
- formed from breakdown of leaf litter and organic matter near the surface
- percolate down through a soil profile and either bound to soil particles or are degraded by microorganisms

Example plot of DOC in soil water

DOC in Groundwater

Leachate has low DOC

 DOC concentrations: low (< 2 mg/L) due to removal of organic compounds during infiltration of water through soil

Rivers and Lakes: DOC concentrations: highly variable (5 – 20 mg/L) and dependent on inputs

- DOC can be low at low stream discharge (fed by groundwater) but increase with increasing discharge due to inputs from organic-rich soil water (runoff)
 Oceans: DOC concentrations: low (~ 1 mg/L)
- Derived from continental runoff and photosynthesis near the surface which fixes CO₂ as organic matter

Unnatural Organic Matter in the Environment: Organic Pollutants

Nonaqueous phase liquids (NAPL) – nonpolar organic liquids with poor solubility

- in water that form separate phases in the subsurface
- LNAPL light (density < water); e.g., gasoline
- DNAPL dense (density > water); e.g., chlorinated hydrocarbons

Aromatic hydrocarbons: BTEX (benzene, toluene, ethylbenzene, xylene) carcinogenic, harmful to central nervous system

benzene

ethylbenzene

Pyrene

Chlorinated hydrocarbons

 \square

Polynuclear aromatic hydrocarbons (PAH)

xvlenes

LNAPLs

Less dense than water; Spread across surface of groundwater

DNAPLs

More dense than water; Spread across surface of impermeable layers at depth (e.g., aquitards)

Pump and treat

- contaminated groundwater is pumped out of an aquifer and treated at the surface to remove contaminants; can be used to mitigate spread of a contaminant plume;
- Problems: difficult to remove all of the contaminants from the water and to treat it

Example of a Pump and Treat System with Two Extraction Wells.

EPA Pump and Treat Diagram

Bioremediation

- Stimulating microbial activity to enhance decomposition of organic contaminants into CO₂
- Problems: the contaminants are usually difficult for microbes to degrade; can form harmful byproducts

Challenges for remediating organic pollutants:

- a. Dispersion movement of pollutants through the subsurface
- b. Adsorption binding of pollutants to organic and mineral surfaces

Polar compounds

• adsorb to surface charges on clay minerals and oxides

Nonpolar compounds

- Partition out of water; strongly adsorb to nonpolar phases in the subsurface;
 e.g., solid organic matter coatings on minerals
- Adsorption of nonpolar compounds follows distribution coefficient (K_d): $K_d = C_{ads}/C_{soln}$
- The distribution coefficient for an organic molecule depends on its hydrophobicity, affinity for natural organic matter, and abundance of natural organic matter

How to collect water samples for analysis of DOC:

Collection:

Soil water: collect water from PVC pipes installed in the ground at various depths

Lysimeters: pull water from unsaturated soils Piezometers: collect water from saturated soils

Storage:

- a) Store in amber glass vials (not plastic!) that have been combusted at 550°C to remove organic contamination; amber prevents light degradation
- **b)** Filtration: filter water through 0.2 or 0.45 μm filter to remove microbes
- **c) Chemical treatment**: acidify water with hydrochloric acid to prevent microbial activity
- d) Chilling: Store in fridge at 4°C until analysis

Dissolved Organic Carbon (DOC) – defined as all organic carbon that passes through a 0.45 μ m filter

Total Organic Carbon (TOC) – all organic carbon in an unfiltered sample (includes particulates larger than 0.45 μm diameter)

Quantifying the concentration of organic C

- **1. TOC analyzers** quantification of CO₂ released from combustion of organic matter; can be done on aqueous or solid samples depending on instrument
- 2. "Loss on ignition" burns off all organic matter (CH₂O) in an oven, and the weight difference is used to approximate C content

$"CH_2O" + O_2 \rightarrow CO_2 + H_2O$

Characterizing the chemical composition of organic C:

Spectroscopy – study of interaction between light and matter

Ultraviolet-visible spectroscopy (UV-Vis)

• measures absorbance of <u>ultraviolet and visible light</u> by organic compounds

