Lecture 9: Complexation Reactions and Metal Ion Speciation

Outline

- 1. Aqueous complexes and their components (ligands and metal ions)
- 2. Environmental importance of complexes in natural and engineered systems
- 3. Types of complexes
- 4. Factors that impact metal-ligand interactions
- 5. Complexation equilibrium constants

Aqueous complexes and their components (ligands and metal ions)

Complexes consist of a central metal ion and one or more ligands

Central metal ion

- has a positive charge
- acts as a Lewis acid (accepts electrons to form a chemical bond)
- defined by a *coordination number* (C_N) number of ligands with which it is able to form bonds

Ligand – organic or inorganic compound that complexes a metal ion and acts as a Lewis base (donates electrons)

- have one or more pairs of electrons that are available to form bonds with metal ions (that is, not already in a bond)
- common examples include Cl⁻, OH⁻, CO₃²-, NH₃, organic molecules (CH₃COO⁻)
- the most common ligand is H_2O ; metal ions are usually complexed by water molecules in solution, e.g., Zn^{2+} would actually be $Zn(H_2O)4^{2+}$

Monodentate ligand – one pair of electrons available to bond; e.g., Cl⁻ *Bidentate ligand* – two pairs of electrons available to bond; e.g., oxalate, $C_2O_4^2$ *Multidentate ligand* – more than one pair of electrons able to bond (unspecified number) *Chelates* – ligands with two or more binding sites that form a ring structure around the central metal ion; "claws"

Binding strength between the ligand and ion tends to increase with increasing number of binding sites due to *entropy*. Compare the reactions between complexation of Zn^{II} by ammonia (monodentate) and by the organic chelator, trien (4 binding sites):

$$
Zn(H_2O)2+ + 4 NH3 \leftarrow \rightarrow Zn(NH_3)2+ + 4 H2O (5 reactants, 5 products; $\Delta S^0 = -20$ J/mol/K)
$$

 $\text{Zn}(H_2O)_{4}^{2+}$ + trien \Longleftrightarrow Zn(trien)²⁺ + 4 H₂O (2 reactants, 5 products; $\Delta S^0{}_r$ = +107 J/mol/K)

Figure 9.1

Environmental importance of complexes in natural and engineered systems

Why are complexes important in the environment?

- 1. Affects chemical behavior, for example, by changing net charge
	- a. E.g., the dominant form of Au^{3+} in the oceans is the complex $Au(Cl)_{4}$
- 2. Can make a metal ion more or less sensitive to oxidation/reduction reactions
- 3. Complexation can keep metals soluble
	- a. E.g., Fe^{3+} is insoluble (forms $Fe(OH)_{3}$) unless it's complexed by organic molecules such as siderophores (used by plants and microbes)

Siderophores: $red = oxygen$; gray = carbon; blue = nitrogen; dark blue=iron 4. Can increase or decrease bioavailability and toxicity

- a. E.g., Al^{3+} is soluble at low pH and highly toxic, but toxicity is mitigated by complexation with F- ions
- 5. Can increase mineral dissolution by removing dissolution products from the system

Types of complexes

1. Inner sphere complexes

2. Outer sphere complexes

Inner sphere complexes

- "true" bonding; electron orbitals of the metal ion and ligand overlap
- NOT a covalent bond; electrons only come from one atom (the ligand)
- ligand atoms replace waters of hydration that surround a central metal ion

Coordination numbers – number of bonds a central metal ion can form

- typically range from 2 to 8, can be as high as 12, but are mostly 4 and 6
- $C_N = 2$; linear complex forms
- $C_N = 4$; tetrahedral complex forms ([CuCl₄]²⁻; [CoCl₄]²⁻); sometimes square planar $([PtCl₄]²⁻; [XeF₄])$
- $C_N = 6$; octahedral complex forms ($[Co(NH_3)_6]^{3+}$); bonds can be symmetric or asymmetric

Outer sphere complexes (ion pairs)

- Ligands form long range electrostatic bonds with hydrated metal ions (charges attract)
- The metal ion does not lose its waters of hydration
- Bonding orbitals between metal ion and ligand do not overlap
- Typically weaker than inner sphere complexes

Factors that impact metal-ligand interactions

1. Properties of the metal ion

Class A (hard acids)

- have highly stable electron configurations that are not easily distorted by ligands
- "hard spheres"
- Form relatively weak complexes, usually with small ligands (N, O, F)

• e.g., H^+ , Na⁺, K⁺, Mg²⁺, Ca²⁺, Pb²⁺, Al³⁺

Class B (soft acid)

- have 10-12 electrons in their outer shell that can be easily distorted by ligands
- tend to form stronger complexes where they can covalently share electrons
- e.g., Cu^+ , Ag^+ , Au^+ , Hg^{2+} , Cd^{2+}

Borderline metal ions: Mn^{2+} , Fe^{2+} , Ni^{2+} , Cu^{2+}

- 2. Properties of the ligand
	- 1) The number of binding sites stability increases with increasing binding sites (entropy)
	- 2) The size of the rings formed steric effects limit stability (stability: five-membered ring $>$ six-membered $>$ seven-membered; optimal angles to provide optimal overlap of bonding orbitals); refers to the ligand's ability to adopt its preferred orientation
	- 3) The nature of the ligand atom (e.g., N or O) N tends to form stronger complexes than O

Complexation Equilibrium Constants

The stability of a given complex can be described by a stability constant, K_{stab} :

$$
Al^{3+} + 4F \rightarrow AlF_4
$$

$$
K_{stab} = \frac{a_{AlF_4^-}}{a_{Al^3} + a_{F^-}^4}
$$

We can examine step-wise complex stability using hydroxide ions and a metal ion center ($Meⁿ⁺$):

1. Hydroxide replaces a water of hydration:

$$
Me(H_2O)xn+ + OH- \Longleftrightarrow Me(OH)(H_2O)(x-1)(n-1)
$$

For simplicity:

$$
Me^{n+} + OH^- \leftrightarrow Me(OH)^{(n-1)}
$$

This reaction can also be expressed in terms of protons:

 $Me^{n+} + H_2O \leftrightarrow Me(OH)^{(n-1)} + H^+$

This can happen as many times as it takes to satisfy a coordination number:

 $K_l = [Zn(OH)^+] / [Zn^{2+}][OH^{\dagger}] = 10^5$ Zn^{2+} + OH \leftrightarrow Zn(OH)⁺ $\text{Zn}(\text{OH})^+$ + OH \leftrightarrow $\text{Zn}(\text{OH})_2{}^0$ $K_2 = [Zn(OH)_2^0] / [Zn(OH)^+] [OH^-] = 10^{5.2}$ $Zn(OH)₂⁰ + OH^- \leftrightarrow Zn(OH)₃$ $K_3 = [Zn(OH)_3^-]/[Zn(OH)_2^0][OH^-] = 10^{3.7}$

$$
Zn(OH)_3 + OH^{\cdot} \Longleftrightarrow Zn(OH)_4{}^{2} \qquad K_4 = [Zn(OH)_4{}^{2}]/[Zn(OH)_3{}^{\cdot}][OH^{\cdot}] = 10^{1.6}
$$

All of these species contribute to the concentration of total dissolved zinc:

$$
[Zn^{II}]_T = [Zn^{2+}] + [Zn(OH)^+] + [Zn(OH)_2{}^0] + [Zn(OH)_3{}^-] + [Zn(OH)_4{}^2{}^-]
$$

These equations are difficult to use to predict the stability of any one given compound, so the reactions can be combined to yield a *cumulative stability constant*, *β*, that is expressed in terms of $[H^+]$ concentrations:

For example, combining the first two steps:

$$
Zn^{2+} + H_2O \Longleftrightarrow Zn(OH)^+ + H^+
$$

$$
Zn(OH)^+ + H_2O \Longleftrightarrow Zn(OH)_2^0 + H^+
$$

The cumulative equation becomes:

 $[Zn(OH)₂⁰] = \beta_2 [Zn²⁺]/[H⁺]²$

So we can determine how much Zn^{2+} becomes complexed by OH⁻ groups *at a given pH*.