Lecture 9: Complexation Reactions and Metal Ion Speciation

Outline

- 1. Aqueous complexes and their components (ligands and metal ions)
- 2. Environmental importance of complexes in natural and engineered systems
- 3. Types of complexes
- 4. Factors that impact metal-ligand interactions
- 5. Complexation equilibrium constants

Aqueous complexes and their components (ligands and metal ions)

Complexes consist of a central metal ion and one or more ligands

Central metal ion

- has a positive charge
- acts as a Lewis acid (accepts electrons to form a chemical bond)
- defined by a *coordination number* (C_N) number of ligands with which it is able to form bonds

Ligand – organic or inorganic compound that complexes a metal ion and acts as a Lewis base (donates electrons)

- have one or more pairs of electrons that are available to form bonds with metal ions (that is, not already in a bond)
- common examples include Cl⁻, OH⁻, CO₃²⁻, NH₃, organic molecules (CH₃COO⁻)
- the most common ligand is H_2O ; metal ions are usually complexed by water molecules in solution, e.g., Zn^{2+} would actually be $Zn(H_2O)_4^{2+}$

Monodentate ligand – one pair of electrons available to bond; e.g., Cl⁻
 Bidentate ligand – two pairs of electrons available to bond; e.g., oxalate, C₂O₄²⁻
 Multidentate ligand – more than one pair of electrons able to bond (unspecified number)
 Chelates – ligands with two or more binding sites that form a ring structure around the central metal ion; "claws"

Binding strength between the ligand and ion tends to increase with increasing number of binding sites due to *entropy*. Compare the reactions between complexation of Zn^{II} by ammonia (monodentate) and by the organic chelator, trien (4 binding sites):

$$Zn(H_2O)_4^{2+} + 4 NH_3 \leftarrow \Rightarrow Zn(NH_3)_4^{2+} + 4 H_2O$$
 (5 reactants, 5 products; $\Delta S^0_r = -20 J/mol/K$)

 $Zn(H_2O)_4^{2+}$ + trien $\leftarrow \rightarrow Zn(trien)^{2+} + 4 H_2O$ (2 reactants, 5 products; $\Delta S^0_r = +107 \text{ J/mol/K}$)

Figure 9.1

Environmental importance of complexes in natural and engineered systems

Why are complexes important in the environment?

- 1. Affects chemical behavior, for example, by changing net charge
 - a. E.g., the dominant form of Au^{3+} in the oceans is the complex $Au(Cl)_4^{-}$
- 2. Can make a metal ion more or less sensitive to oxidation/reduction reactions
- 3. Complexation can keep metals soluble
 - a. E.g., Fe³⁺ is insoluble (forms Fe(OH)₃) unless it's complexed by organic molecules such as siderophores (used by plants and microbes)

Siderophores: red = oxygen; gray = carbon; blue = nitrogen; dark blue=iron
4. Can increase or decrease bioavailability and toxicity

- a. E.g., Al^{3+} is soluble at low pH and highly toxic, but toxicity is mitigated by complexation with F⁻ ions
- 5. Can increase mineral dissolution by removing dissolution products from the system

Types of complexes

1. Inner sphere complexes

2. Outer sphere complexes

Inner sphere complexes

- "true" bonding; electron orbitals of the metal ion and ligand overlap
- NOT a covalent bond; electrons only come from one atom (the ligand)
- ligand atoms replace waters of hydration that surround a central metal ion

Coordination numbers - number of bonds a central metal ion can form

- typically range from 2 to 8, can be as high as 12, but are mostly 4 and 6
- $C_N = 2$; linear complex forms
- C_N = 4; tetrahedral complex forms ([CuCl₄]²⁻; [CoCl₄]²⁻); sometimes square planar ([PtCl₄]²⁻⁻; [XeF₄])
- C_N = 6; octahedral complex forms ([Co(NH₃)₆]³⁺); bonds can be symmetric or asymmetric

Outer sphere complexes (ion pairs)

- Ligands form long range electrostatic bonds with hydrated metal ions (charges attract)
- The metal ion does not lose its waters of hydration
- Bonding orbitals between metal ion and ligand do not overlap
- Typically weaker than inner sphere complexes

Factors that impact metal-ligand interactions

1. Properties of the metal ion

Class A (hard acids)

- have highly stable electron configurations that are not easily distorted by ligands
- "hard spheres"
- Form relatively weak complexes, usually with small ligands (N, O, F)

• e.g., H⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Pb²⁺, Al³⁺

Class B (soft acid)

- have 10-12 electrons in their outer shell that can be easily distorted by ligands
- tend to form stronger complexes where they can covalently share electrons
- e.g., Cu⁺, Ag⁺, Au⁺, Hg²⁺, Cd²⁺

Borderline metal ions: Mn²⁺, Fe²⁺, Ni²⁺, Cu²⁺

- 2. Properties of the ligand
 - 1) The number of binding sites stability increases with increasing binding sites (entropy)
 - 2) The size of the rings formed steric effects limit stability (stability: five-membered ring > six-membered > seven-membered; optimal angles to provide optimal overlap of bonding orbitals); refers to the ligand's ability to adopt its preferred orientation
 - 3) The nature of the ligand atom (e.g., N or O) N tends to form stronger complexes than O

Complexation Equilibrium Constants

The stability of a given complex can be described by a stability constant, K_{stab} :

$$Al^{3+} + 4F^{-} \rightarrow AlF_{4}^{-}$$
$$K_{stab} = \frac{a_{AlF_{4}}^{-}}{a_{Al}^{3+}a_{F^{-}}^{4}}$$

We can examine step-wise complex stability using hydroxide ions and a metal ion center (Me^{n+}):

1. Hydroxide replaces a water of hydration:

$$Me(H_2O)_x^{n+} + OH^- \leftarrow \rightarrow Me(OH)(H_2O)_{(x-1)}^{(n-1)}$$

For simplicity:

$$Me^{n+} + OH^{-} \leftrightarrow Me(OH)^{(n-1)}$$

This reaction can also be expressed in terms of protons: $Me^{n+} + H_2O \leftarrow \Rightarrow Me(OH)^{(n-1)} + H^+$

This can happen as many times as it takes to satisfy a coordination number:

 $Zn^{2+} + OH^{-} \leftrightarrow Zn(OH)^{+} \qquad K_{1} = [Zn(OH)^{+}] / [Zn^{2+}][OH^{-}] = 10^{5}$ $Zn(OH)^{+} + OH^{-} \leftrightarrow Zn(OH)_{2}^{0} \qquad K_{2} = [Zn(OH)_{2}^{0}] / [Zn(OH)^{+}][OH^{-}] = 10^{5.2}$ $Zn(OH)_{2}^{0} + OH^{-} \leftrightarrow Zn(OH)_{3}^{-} \qquad K_{3} = [Zn(OH)_{3}^{-}] / [Zn(OH)_{2}^{0}][OH^{-}] = 10^{3.7}$

$$Zn(OH)_{3}^{-} + OH^{-} \leftrightarrow Zn(OH)_{4}^{2-}$$
 $K_{4} = [Zn(OH)_{4}^{2-}] / [Zn(OH)_{3}^{-}][OH^{-}] = 10^{1.6}$

All of these species contribute to the concentration of total dissolved zinc:

$$[Zn^{II}]_{T} = [Zn^{2+}] + [Zn(OH)^{+}] + [Zn(OH)_{2}^{0}] + [Zn(OH)_{3}^{-}] + [Zn(OH)_{4}^{2-}]$$

These equations are difficult to use to predict the stability of any one given compound, so the reactions can be combined to yield a *cumulative stability constant*, β , that is expressed in terms of [H⁺] concentrations:

For example, combining the first two steps:

$$Zn^{2+} + H_2O \leftrightarrow Zn(OH)^+ + H^+$$
$$Zn(OH)^+ + H_2O \leftrightarrow Zn(OH)_2^0 + H^+$$

The cumulative equation becomes: $[Zn(OH)_2^0] = \beta_2 [Zn^{2+}]/[H^+]^2$

So we can determine how much Zn^{2+} becomes complexed by OH⁻ groups *at a given pH*.