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• Machine learning models detect causes of
salinization syndrome in U.S. rivers.

• Human activities, e.g., urbanization, are
the main source of U.S. river salinity.

• Alkalinization in U.S. rivers is governed
mainly by natural processes.
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Ongoing salinization and alkalinization in U.S. rivers have been attributed to inputs of road salt and effects of human-
accelerated weathering in previous studies. Salinization poses a severe threat to human and ecosystem health, while
human derived alkalinization implies increasing uncertainty in the dynamics of terrestrial sequestration of atmo-
spheric carbon dioxide. A mechanistic understanding of whether and how human activities accelerate weathering
and contribute to the geochemical changes in U.S. rivers is lacking. To address this uncertainty, we compiled dissolved
sodium (salinity proxy) and alkalinity values along with 32 watershed properties ranging from hydrology, climate,
geomorphology, geology, soil chemistry, land use, and land cover for 226 rivermonitoring sites across the coterminous
U.S. Using these data, we built two machine-learning models to predict monthly-aggregated sodium and alkalinity
fluxes at these sites. The sodium-prediction model detected human activities (represented by population density and
impervious surface area) as major contributors to the salinity of U.S. rivers. In contrast, the alkalinity-prediction
model identified natural processes as predominantly contributing to variation in riverine alkalinity flux, including run-
off, carbonate sediment or siliciclastic sediment, soil pH and soil moisture. Unlike prior studies, our analysis suggests
that the alkalinization in U.S. rivers is largely governed by local climatic and hydrogeological conditions.
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1. Introduction

Salinization and alkalinization in freshwaters can threaten drinking
water supplies, impair freshwater biodiversity, accelerate corrosion of
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infrastructure, and mobilize inorganic and organic pollutants (Cañedo-
Argüelles et al., 2014; DeVilbiss et al., 2021; Duan and Kaushal, 2015;
Dugan et al., 2017; Hintz and Relyea, 2019; Kaushal, 2016). Over the past
several decades, salinity and alkalinity in freshwaters have increased in the
United States (U.S.) and worldwide (Corsi et al., 2015; Corwin, 2021;
Duan and Kaushal, 2015; Findlay and Kelly, 2011; Kaushal et al., 2005,
2014, 2018; Likens and Buso, 2010; Thorslund et al., 2021). Investigators
have suggested that main anthropogenic contributors to salinization and al-
kalinization of U.S. surface waters include road salt deicers and other indus-
trial sources, wastewater discharge, groundwater irrigation, saltwater
inundation caused by sea-level rise, and human-accelerated weathering
(Bhide et al., 2021; Kaushal et al., 2013, 2017, 2018; Thorslund et al.,
2021; Barnes and Raymond, 2009). These anthropogenic factors augment
natural processes, such as natural weathering of rock and soil, dissolved
ions in precipitation, and sea spray aerosols in coastal areas (Kaushal et al.,
2013; Meybeck, 2003). Among these processes, road salt and human-
accelerated weathering have been suggested as the dominant drivers of
the observed salinization and alkalinization of U.S. rivers and streams over
the past several decades on a continental scale (e.g., Kaushal et al., 2018). In-
creased urbanization and ongoing climate change have been thought to be
the main driver of the ubiquitous salinization of rivers (e.g., Kaushal and
Belt, 2012; Kelleher et al., 2020). In arid and semi-arid regions, salinization
can be significantly accelerated during the dry season, leading to further loss
of soil moisture and suppression of leaching events (Perri et al., 2022; Perri
et al., 2020). Although this study focuses on surface water, it is worth noting
that the increase in salinity and alkalinity in groundwater driven by human
activities is not uncommon. For example, Hansen et al. (2018) suggested the
increase in salinity and alkalinity in groundwater in San Joaquin Valley (Cal-
ifornia, U.S.) was primarily driven by agricultural practices.

Alkalinity in streams and rivers can be derived from both natural pro-
cesses such as rock weathering and microbial processing (Kaushal et al.,
2018; Regnier et al., 2022; Zhang and Planavsky, 2020), and anthropogenic
processes including the interaction between human activities and water-
shed properties (e.g., bedrock geology). Recently, it has been suggested
that human activity is driving a long-term alkalinity increase
(i.e., alkalinization) in the U.S. rivers (Kaushal et al., 2018). Furthermore,
previous studies indicate that freshwater salinization could lead to a further
increase in river alkalinity. For example, Duan and Kaushal (2015) found
that dissolved inorganic carbon (DIC; largely represents alkalinity) in-
creased with salt inputs. In urban settings, increases in impervious surface
area (Foley et al., 2005; Grimm et al., 2008) coincide with increased pH
and DIC, which is thought to be linked to accelerated weathering of imper-
vious surfaces (Kaushal et al., 2017). The few studies that have suggested
that human-accelerated weathering contributes to surface water saliniza-
tion and alkalinization have focused on urban areas. A broad understanding
of the contribution of human-accelerated weathering to overall riverine al-
kalinity is limited, especially on the national or continental scale. Riverine
flux of alkalinity forms a vital link in the Earth's atmosphere-land-ocean sys-
tem. It acts to regulate the global atmospheric carbon cycle over multiple
time scales. Therefore, a mechanistic understanding of the drivers of fresh-
water alkalinization will be essential to quantify atmospheric carbon diox-
ide sequestration and to project future changes in the geochemical
composition of rivers and global carbon cycling under a changing climate.

In this study, we compiled sodium (as a salinity proxy) and alkalinity
from the U.S. Geological Survey (USGS) river gauges that are used to mon-
itor water quantity and quality in rivers and streams across the U.S. Sodium
rather than chloride was selected as the salinity proxy to be consistent with
the previous study (Kaushal et al., 2018). Moreover, sodium and chloride
fluxes are highly correlated (Fig. S1). Therefore, we anticipate that the con-
clusions drawn for sodium fluxes would also be applicable to chloride
fluxes. For these sites, we delineated their watershed areas and calculated
and determined corresponding watershed properties. These watershed
properties include features of hydrology, climate, geomorphology, geology,
soil chemistry, land use, and land cover. We then developedmachine learn-
ingmodels to predict salinity and alkalinity in U.S. rivers using selectedwa-
tershed properties. In the model development phase, relative importance of
2

watershed properties was evaluated to quantitatively assess the roles that
human activities and natural processes play in regulating the salinity and al-
kalinity of U.S. rivers. Here we aimed to address two questions: (1) what
factors are driving the spatiotemporal variation of watershed-level salinity
and alkalinity in U.S. rivers on a continental scale? and (2) How does the
predicted watershed-level chemical composition in U.S. rivers interact
with each individual watershed property?

2. Materials and methods

2.1. Data acquisition and processing

A total of 226USGS river sites (Fig. 1) were selected as study sites. These
sites are a subset of 232 sites investigated in previous research (Kaushal
et al., 2018) which concluded that human-accelerated weathering and
road salts were themain drivers of salinization and alkalinization inU.S. riv-
ers. These sites were selected because long-term continuous water quality
measurements have been recorded for at least 30 years from 1942 to
2021. Six of the 232 sites were removed in this study due to three reasons:
1) three sites are located on human-built canals, 2) one site has a large un-
certainty in the drainage area estimation, 3) two sites do not have paired hy-
drologic and water quality datasets. These 226 sites are located across six
geographic zones: Northeast (n = 43), Southeast (n = 31), Midwestern
(n = 62), Southwest (n = 65), Northwest (n = 21), and Pacific (n = 4)
(Fig. 1). The corresponding watershed of each gauging station was delin-
eated using the elevation, derived flow direction, and flow accumulation
layers from HydroSHEDS (https://www.hydrosheds.org). Water chemistry
data collected at these USGS monitoring sites were assumed to be the inte-
grated product of solutes released from the corresponding watersheds.

Riverine sodium and alkalinity measurements were acquired from the
Water Quality Portal (Read et al., 2017). To estimate the long-term impact
of human activities and natural processes on surface water chemistry for
each USGS site, we first aggregated daily‑sodium and alkalinity measure-
ments by year and month before calculating the annual-averaged monthly
water chemistry measurements. After aggregation, we retained a total of
2685 sodium and 2691 alkalinity measurements, which were then normal-
ized bywatershed area to calculate the flux (mg/km2/month) using Eq. (1).

F ¼
IAC � D� 28:32 liter

ft3
� 3600 second

hour � 24 hour
day � 30 day

month

WA
(1)

where F represents sodium or alkalinity flux (mg/km2/month), IAC is the
monthly inorganic analyte concentration (mg/L),D denotes river discharge
(ft3/s) whileWA is watershed area (km2). For alkalinity flux, it is expressed
inmgCaCO3/km2/month. The numbers of 28.32, 3600, 24, and 30 are unit
conversion factors.

Based on domain knowledge (see also detailed descriptions of attributes
in Section 2.3), we selected and derived 32 watershed features (Table 1)
that could potentially contribute to the salinization and alkalinization in
U.S. rivers on the continental scale. These features include characteristics
of hydrology (n= 2), climate (n= 2), geomorphology (n= 5), soil chem-
istry (n = 2), geology (n= 10), land use (n = 4), and land cover (n= 7).
The source of each data layer is included in Table 1.

2.2. Random Forest model

Random Forest (RF) model is a machine learning technique first pro-
posed in the 1990s (Ho, 1995) and further refined in the 2000s (Breiman,
2001). RF is based on the principle of classification and regression trees
(CART) (Liaw andWiener, 2002), which can be used for both classification
and regression tasks. Compared with traditional CART models, RF has the
benefit of avoiding overfitting while improving prediction accuracy. A RF
model ensemble prediction results from many sub-models (i.e., decision
tree) with each ‘tree’ model making independent predictions for the
variable of interest (i.e., target variable) based on the input data
(i.e., predictor variables or features). Each ‘tree’ model is built based on a

https://www.hydrosheds.org
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Fig. 1. Location and region of 226 USGS river monitoring sites used in this study. These sites are a subset of USGS sites previously used by Kaushal et al. (2018).

Table 1
List of all 32 watershed attributes along with their corresponding unit, feature cat-
egory, and source. Features selected for the model development are marked by *.

Feature name Unit Category Source

Runoff* mm per month Hydrology Ghiggi et al. (2021)
Soil moisture* m3 per m3 Hydrology Wang et al. (2021)
Temperature* Celsius Climate Karger et al. (2017)
Precipitation* mm per month Climate
Watershed area km2 Geomorphology This study
Erosion rate* mm per year Geomorphology Amatulli et al. (2020);

Larsen et al. (2014)
Elevation* Meter Geomorphology Amatulli et al. (2020)
Slope Degree Geomorphology
Aspect Degree Geomorphology
Soil organic carbon* g per kg Soil chemistry Poggio et al. (2021)
Soil pH* pH unit Soil chemistry
Evaporite Percentage Geology Hartmann and

Moosdorf (2012)Carbonate sediment* Percentage Geology
Siliciclastic sediment* Percentage Geology
Pyroclastic sediment Percentage Geology
Mixed sediment Percentage Geology
Unconsolidated sediment* Percentage Geology
Igneous basic* Percentage Geology
Igneous intermediate Percentage Geology
Igneous acid Percentage Geology
Metamorphic* Percentage Geology
Impervious surface area* Percentage Land use Brown de Colstoun

et al., 2017
Population density* # per km2 Land use Center For

International Earth
Science Information
Network (2016)

Cultivated vegetation* Percentage Land use Tuanmu and Jetz
(2014)Urban Percentage Land use

Trees* Percentage Land cover
Shrubs Percentage Land cover
Herbaceous vegetation Percentage Land cover
Flooded vegetation* Percentage Land cover
Snow ice Percentage Land cover
Barren Percentage Land cover
Water Percentage Land cover

B. E et al. Science of the Total Environment 889 (2023) 164138
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random subset of the data. In each ‘tree’ model, at each split, a random set
of predictor variables is selected for evaluation to divide the training data
(Breiman, 2001).

Random Forest models have been increasingly used in geoscience and
environmental science research. For example, Tesoriero et al. (2017) used
a RF approach to predict the probability of high levels of a redox-sensitive
contaminant in groundwater. Le et al. (2019) applied a RFmodel to forecast
changes in specific conductance in surface waters that were likely to occur
for the period 2070 to 2100 in response to climate change in Germany.
Estévez et al. (2019) utilized a RF model to investigate the most important
drivers of spatial patterns of water salinity in Spain. Also, a RF model was
employed to predict satellite-derived fire severity classes from geospatial
datasets of fire history, topographic setting, weather, and vegetation type
(Harris and Taylor, 2017). Carranza et al. (2021) applied the RF model to
estimate root zone soil moisture in data-poor regions. Other types of tree-
based models (e.g., XGBoost, boosted regression tree) have also been ap-
plied to resolve hydrogeochemical questions (Choubin et al., 2018;
Erickson et al., 2021a, 2021b; Ransom et al., 2022).

In this study, we developed and applied RFmodels to predict sodium and
alkalinity fluxes in U.S. rivers using watershed properties as predictor vari-
ables. In the model training and development phase, we fine-tuned the
model to find the optimal values for three model hyperparameters: num.
trees (i.e., the number of sub-models), min.node.size (i.e., the minimal size
of the tree branch in each sub-model), andmtry (i.e., the number of predictor
variables selected at each split). In the model development process, we em-
ployed a random partitioning strategy to divide the entire dataset into 10
subsets. One of these subsets was set aside for evaluation purposes
(i.e., hold-out dataset), while the remaining nine subsets were used to train
the model. We randomly selected data on a sample-basis rather than on a
site-basis. In addition to making predictions for river salinity and alkalinity
fluxes, we also used RF model outputs to evaluate the relative importance
of predictor variables in the prediction tasks by calculating and comparing
the Conditional Permutation Importance (CPI) of all selected predictor vari-
ables. A higher CPI value indicates that the corresponding predictor variable
plays amore important role in predicting soluteflux.We also used partial de-
pendence plots (PDP) (Le et al., 2019) to visualize the relationships between
target variables (i.e., riverine sodium or alkalinity flux) and each important
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individual predictor variable. The construction of the RF model and the cal-
culation of variable importance were conducted in R (R Core Team, 2017)
using the ‘mlr’ package (Bischl et al., 2016).

2.3. Feature selection workflow and model evaluation

The goal of the feature selection workflow is to remove predictor fea-
tures which can compete for and share importance in predicting the target
variable and to retain the most relevant predictor features based on either
statistics or domain knowledge. To remove redundant features, we devel-
oped a workflow to assign a ‘priority score’ to each of the 32 predictor fea-
tures. Predictor features with a ‘priority score’≥ 3 were included in the RF
model, while predictor featureswith a ‘priority score’≤ 2might be selected
based on our research interests (Table S1). The priority scorewas calculated
as the sumof three sub-scores. First, the predictor featureswith a coefficient
of variation (CV) value ≥ 10 were assigned a sub-score of 1 with others
rated as 0 (Table S1; ‘CV’ column). For a predictor feature that has a
small coefficient of variation, given that the target feature is highly vari-
able, such predictor feature will likely be deemed to be contributing little
to the prediction of the target variable, i.e., this predictor feature is statisti-
cally irrelevant. The second sub-score was based on the Spearman correla-
tion analysis results for each pair of the predictor and target variables. The
variable pair with a Spearman's r > 0.4 and a p < 0.05 was defined as a sta-
tistically significantly correlated pair. Predictor features correlated with no
more than two other predictor features were assigned a score of 1. Predictor
features showing a correlation with at least three features were assigned a
score of 1 only if they best represented the predictor features from their
own feature category (e.g., land use, land cover) based on domain knowl-
edge. When two or more such predictor features from the same feature cat-
egory exist, the one that showed a higher Spearman's r (p < 0.05) with the
target variable was assigned a score of 1. All other predictor features were
assigned a score of 0 (Table S1; ‘Uncorrelation’ column). Finally, the rank-
ing of predictor features in a preliminary RF model that predicted solute
flux using all 32 predictor features yielded the third sub-score. The top 10
features were assigned a score of 2. Features ranked 11 to 20 and below
20 were assigned a score of 1 or 0, respectively (Table S1; ‘CPI’ column).

A total of 18 features were chosen and used to develop two RF models
for predicting riverine sodium and alkalinity fluxes, respectively, which in-
cluded features of hydrology (n = 2), climate (n = 2), geomorphology
(n = 2), soil moisture (n = 2), geology (n = 5), land use (n = 3), and
land cover (n = 2) (Table 1). Among these features, seven were retained
based on domain knowledge regardless of their priority scores. These
seven features include soil moisture, soil pH, soil organic carbon, silicic-
lastic sediment, erosion rate, flooded vegetation, and igneous basic rock.
These features represent the earth surface processes that regulate the gener-
ation and transport of salinity and alkalinity into rivers (e.g., Brantley et al.,
2008;Wen et al., 2022). To prevent the competition of feature important in-
dices, other comparable predictor features were not selected (e.g., urban
land cover). During model development, both model error and relative
error were calculated for test datasets using Eqs. (2) and (3) to check spatio-
temporal prediction heterogeneity in model.

E ¼ PIF–OIF (2)

RE %ð Þ ¼ PIF–OIFð Þ=OIFð Þ∗100 (3)

where E and RE are calculatedmodel error and relative error, while PIF and
OIF represent predicted and observed (ground truth) inorganic solute
fluxes, respectively.

To explore if the fine-tuned machine learning model had different per-
formances over space and time, we also assessed the relationship between
the frequency of monthly measurement showing a large relative error and
the number of samples in a state, as well as the relationship between the fre-
quency of monthly measurement showing a large relative error and the
month of the observations. Three thresholds of relative error were used:
30 %, 50 %, 100 % with a particular emphasis on the threshold of 30 %.
4

We first performed such assessment for the sodium flux prediction model
to ensure that the trained RF model yielded a great performance before an-
alyzing the results from the alkalinity flux prediction model.

3. Results and discussion

3.1. Evaluation of sodium flux prediction model

Optimal hyperparameters for both sodium and alkalinity riverine flux
prediction models are listed in the supplementary information (Table S2).
Calculatedmean squared error (MSE) in the training phase for bothmodels
are plotted as a function of mtry (1–18), num.trees (100–1500), and min.
node.size (1–15) (Fig. S2). The trained model explained 87 % of the varia-
tion of the target variable in the hold-out dataset (Fig. S3a), indicating a sat-
isfactory model performance in predicting riverine sodium flux for the
coterminous U.S. In addition, calculated residual values showed no signifi-
cant correlation with the predicted sodium flux, confirming the generaliz-
ability of the trained model in predicting sodium flux (Fig. S3b).

We also explored if the trained RF model exhibited any prediction het-
erogeneity over space and time. With respect to the spatial considerations,
we color coded each state by the percentage ofmonthly data points reporting
>30% relative errors for test data of gauging stations in that state (Fig. S4a),
which showed no particular geospatial patterns in the presence of highly er-
roneous predictions. The percentage of monthly data points showing >30 %
relative errors at a site showed no statistically significant correlationwith the
total number of monthly measurements in each state (p > 0.05) (Fig. S4b).
Thesefindings suggest that the trained RFmodelwas unlikely biased for spa-
tial projections. As for temporal considerations, we plotted the percentage of
samples in each month reporting >30 % relative errors as a function of
month of the year for the conterminous U.S. (Fig. S4c). The percentage of
monthly data pointswith over 50%and 100% relative errors were also plot-
ted for reference. No month yielded significantly greater erroneous predic-
tions of riverine sodium flux than others, suggesting that the trained RF
model was unlikely to be biased across different months.

As a summary, the RF model of sodium flux manifests a consistently
good performance over space and time on a continental scale. This analysis
also suggests that the RF model may be applied to explore other solute
fluxes in U.S. rivers.

3.2. Human activities are the main driver of salinization of U.S. rivers

The optimized riverine sodiumflux predictionmodel also provided con-
ditional permutation importance (CPI) values for all 18 selected predictors
(Fig. 2). A predictor feature with a higher CPI value shows a larger weight
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(i.e., greater importance) in predicting riverine sodium flux. The five most
important predictor features of the river sodium flux prediction model
included two human activities related features (population density, imper-
vious surface percentage), two hydrologic features (runoff, soil moisture),
and a land cover characteristic (tree cover). The two human-related fea-
tures had the highest ranking, strongly suggesting that human activities
serve as the main driver of variation in sodium flux in U.S. rivers at a
watershed-level. These human activities likely include road salt use, urban-
ization, and industrialization as suggested by previous studies (e.g., Abbott
et al., 2019; ; Kaushal et al., 2013, 2018; Kaushal and Belt, 2012; Likens and
Buso, 2010; Thorslund et al., 2021; Utz et al., 2022), and these activities
have been thought to release large amounts of sodium into U.S. rivers, lead-
ing tomarked increases in salinization over the past 80 years (Kaushal et al.,
2018). In this study, we define human-related features as those that entail
direct engagement in human activities, which can significantly contribute
to river chemistry, such as road salting.
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Partial dependence plot results show that sodium flux increases with
increases in population density and percentage of impervious surface
area within the watershed (i.e., top two features; Fig. 3a and b). More in-
tensive human activities likely release more salt into surface waters,
which in turn increase watershed-level sodium flux. In the initial in-
creasing phase of partial dependence plots of impervious surface area
and population density, river sodium flux experiences a marked in-
crease before leveling off at a relatively constant rate. Such pattern
might reflect the condition that as more salts are released into the envi-
ronment, the transport capacity (e.g., overland runoff) can be saturated
reaching a limit of sodium transport via rivers. Runoff and soil moisture
were ranked as the third and fourth most important features in sodium
flux prediction model. This pattern suggests a significant hydrological
control on watershed-level sodium flux. With both features, sodium
flux increases markedly at low (or intermediate) values of these hydro-
logic features before reaching a plateau (Fig. 3c and d). In the increasing
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phase, an increase in soil moisture and runoff provides greater capacity
to transport sodium from the watershed to the corresponding river. As
soil moisture and runoff further increase, the increased transport capac-
ity might outpace the supply of available sodium within the watershed.
Therefore, sodium flux might increase at a slower pace or even reach a
plateau. Sodium flux generally decreases with increasing percentage
of tree cover in the watershed area (Fig. 3e), which might reflect less
human-contributed salt under greater tree coverage as well as water
losses associated with transpiration.

The main drivers governing watershed-level sodium flux in U.S. rivers
are human activities followed by secondary factors contributed by natural
processes. This observation is consistent with previous research, which sug-
gest human activities significantly contribute to the long-term salinization
of rivers over past decades on the continental scale (Dugan et al., 2017;
Kaushal et al., 2017, 2018; Kelting and Yerger, 2012; Thorslund et al.,
2021; Utz et al., 2022).

3.3. Evaluation of alkalinity flux prediction model

Based on the same 18 features, we constructed a second RF model to
predict riverine alkalinity flux in the 226 U.S. watersheds. The prediction
model explained 95 % of the variation of riverine alkalinity flux in test
dataset (Fig. S5a). Furthermore, computed residual values demonstrated
no significant correlation with predicted alkalinity flux, indicating a well
generalized alkalinity RF model (Fig. S5b).

Spatial and temporal prediction heterogeneity was also assessed for
the alkalinity flux prediction model. Similar to the sodium flux model,
the alkalinity flux model showed no significant spatiotemporal imbal-
ance (Fig. S6a and b). In particular, the percentage of monthly data
points with >30 % relative errors had no statistically significant correla-
tion with the total number of monthly measurements in a state (p > 0.05).
Moreover, no month yielded more erroneous predictions than other
months (Fig. S6c).

3.4. Natural processes are the main drivers of alkalinization in U.S. rivers

Based on the calculated CPI values (Fig. 4), the five most important pre-
dictor features in regulating riverine alkalinity flux include two hydrologi-
cal features (runoff, soil moisture), two geological features (carbonate and
siliciclastic sediment), and one soil chemical feature (soil pH). All five fea-
tures are natural factors. Although two human activity related features
(population density, impervious surface percentage) were among the top
10 predictor features, their CPI values were much smaller than the top
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Fig. 4. Predictor feature ranking based on conditional permutation importance
values from the riverine alkalinity flux prediction model.
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four features. These observations suggest that human factors have relatively
minimal impact onwatershed-level alkalinity flux compared to natural pro-
cess related features at the continental scale. Although some previous re-
search (e.g., Kaushal et al., 2017, 2018) has suggested that increasing
salinity could enhance the rockweathering resulting in river alkalinization,
our results suggest the impact of human activities (e.g., road salting) on
watershed-level alkalinity fluxmight be limited in scope and only prevalent
in the vicinity of urban areas. For watersheds with more diverse land use
and land cover, natural sources of alkalinity flux in watershed, including
those derived from silicate or carbonate weathering and microbial pro-
cesses (Kaushal et al., 2018; Regnier et al., 2022; Zhang and Planavsky,
2020), appear to outpace the contribution from human-accelerated
weathering. Therefore, in contrast to sodium flux, we conclude that
watershed-level alkalinity fluxes are mainly controlled by natural processes
on a continental scale.

We also evaluated the relationships between each individual important
predictor feature and riverine alkalinity flux. Overall, runoff, carbonate
sediment, soil pH, siliciclastic sediment, and soil moisture all display a
positive correlation with alkalinity flux (Fig. 5). As runoff increases,
riverine alkalinity flux rapidly increases before reaching a plateau
(Fig. 5a). In the rising phase of alkalinity flux, increased runoff and soil
moisture suggest increased capacity of watersheds to deliver weathering
products (i.e., alkalinity) to the river. With further increase in runoff the
amount of alkalinity supply is eventually outpaced by the transport capacity
of thewatershed, leading to a plateau in riverine alkalinityflux. In addition,
higher soil moisture is likely to increase the wetted surface area of
weatherable minerals which in turn should promote rock weathering and
microbial activity (Berner, 2004; Kaushal et al., 2018; Regnier et al.,
2022; Zhang and Planavsky, 2020). Carbonate and siliciclastic sediments
(i.e., the percentage of watershed area underlain by carbonate or silicic-
lastic sediment) were ranked as the second and fourth most important fea-
tures, respectively. Carbonate weathering provides alkalinity to rivers in a
much faster pace than other rock types (Chou et al., 1989; Liu et al.,
2011), which explain the positive correlation with alkalinity flux at
modest levels of carbonate sediment (Fig. 5b). As the extent of carbon-
ate deposits further increase, the transport capacity of alkalinity in wa-
tershed becomes saturated, leading to a plateau in river alkalinity flux
(Fig. 5b). The observation that alkalinity flux generally positively corre-
late with siliciclastic sediment reflects the contribution of silicate
weathering to riverine alkalinity (Fig. 5e). Soil pH, the third most im-
portant predictor feature, can be considered as a proxy of the intensity of
rock weathering, i.e., the higher the soil pH, the greater the intensity of
rock weathering. Given this effect, the observed positive correlation be-
tween soil pH and alkalinity flux (Fig. 5c) might be attributed to the fact
that high weathering intensity contributes to elevated pH, rather than the
inverse relationship.

4. Conclusions

In this study, we compiled dissolved sodium (as the salinity proxy) and
alkalinity concentrations for 226 river monitoring sites across the U.S.
along with a total of 32 corresponding watershed properties ranging from
hydrology, climate, geomorphology, geology, soil chemistry, land use,
and land cover for those river monitoring sites. We built two random forest
machine learning models using 18 selected watershed features to predict
monthly-aggregated sodium and alkalinity contents at these sites. Devel-
oped models yielded comparably strong performance across different
months and regions. The sodium-prediction model detected population
density and impervious surface percentage as the two most important
features, suggesting human activities (likely road salt input) as the major
sources of salinity in U.S. rivers. This finding was consistent with previous
studies, providing another line of evidence that the developed machine
learning model yielded reasonably accurate results. The alkalinity predic-
tion model detected natural processes related parameters, namely runoff,
percent of the area underlain by carbonate sediment or siliciclastic
sediment, and soil pH or moisture, as the top five important features.
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Therefore, unlike previous studies, we suggested that the watershed-level
alkalinization in U.S. rivers might be mostly governed by climatic and
hydrogeological conditions. Our finding that watershed-level alkalinity
flux in the U.S. is mainly governed by water- and climate-related natural
processes implies that a holistic understanding of the evolution of natural
conditions of different regions is needed to implement enhanced rock
weatheringmore effectively. Under climate change, hydrogeological condi-
tions will shift in different regions to various extents and even in different
directions. So far, many enhanced rock weathering efforts are either
planned or ongoing, which would also benefit from such analysis of the re-
lationship between natural factors and weathering flux.
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