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a harmonized river-ocean coupled 
database for the northern Gulf of 
Mexico
Bailey armos1, Shuang Zhang  1 ✉, tao Wen  2, Ellie Walker3 & Prabir Daripa4

The northern Gulf of Mexico (nGoM) receives water from over 50 rivers which are highly influenced by 
humans and include the largest river in the United States, the Mississippi River. to support large-scale 
data-driven research centered on the dynamic river-ocean system in the region, this study consolidated 
hydrogeochemical river and ocean data from across the nGoM. In particular, we harmonized 35 
chemical solute parameters from 54 rivers and incorporated river discharge data to derive daily solute 
concentration and flux estimates throughout the nGoM. By integrating this river data with 17 ocean 
parameters, we generated a pre-processed and time-averaged River-Ocean coupled Database for the 
nGoM, known as ROcD-nGoM with the goals to streamline and enhance diverse research efforts in the 
nGoM, and also to showcase the value of making hydrological and oceanographic data FaIR (Findable, 
accessible, Interoperable, Reusable). Moreover, the script developed in this study can be easily adapted 
for analyzing other chemical solutes and exploring other regions of interest.

Background & Summary
The Northern Gulf of Mexico (nGoM) holds significant ecological and economic importance. It spans coast-
lines of five United States (US) states (i.e., Florida, Alabama, Mississippi, Louisiana, Texas) and has witnessed 
a population increase of 164% from 1950 to 20001. This region is not only home to a thriving fishing industry 
but also accounts for approximately 97% of US oil and gas production that comes from the outer continental 
shelf (OCS)2. Widespread anthropogenic influences in the nGoM have far-reaching effects on its ecosystem and 
environment. Among the ecological and environmental challenges faced by the nGoM, many of them stem from 
urbanization and human-induced inputs transported via rivers into the coastal waters. These anthropogenic 
nutrient inputs not only contribute to coastal eutrophication in the Gulf of Mexico but also pose a global threat 
to coastal ecosystems3. Moreover, the influx of alkalinity and other carbonate system species can influence the 
coastal ocean’s susceptibility to acidification4,5. Additionally, the release of heavy metals through anthropogenic 
activities has polluted estuaries surrounding the nGoM, such as the Grand Bay National Estuarine Reserve5. 
In the wake of challenges, the nGoM has still demonstrated remarkable resilience, evident in its recovery from 
the ecosystem-wide damage caused by the Deepwater Horizon oil spill in 20106,7 as well as hurricanes such as 
Hurricane Katrina8.

One limitation in further understanding the nGoM’s past, present, and future states is the accessibility and 
usability of both the ocean and river data surrounding this region. The Gulf of Mexico Coastal Ocean Observing 
System (GCOOS) offers on-demand information about the nGoM’s coastal and open ocean waters, with differ-
ent focuses including ecosystems and long-term changes9. However, researchers interested in utilizing GCOOS 
data face the substantial task of finding, downloading, exploring, harmonizing (the process of synthesizing dif-
ferent data fields, formats, dimensions, and columns into a single integrated and coherent database), and organ-
izing the data to suit their specific projects. The United States Geological Survey (USGS) provides river chemical 
and discharge data for stations across the country, with the Water Quality Portal (WQP) serving as the database 
for publicly available water quality data10,11. While the WQP hosts data from various sources, mainly the USGS, 
EPA, and USDA, it lacks proper assimilation of water quality data into a harmonized database, creating a gap 
between data availability and reusability11,12. As a result, additional datasets such as the Standardized Nitrogen 
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and Phosphorus Dataset (SNAPD)13 and the River Chemistry for the U.S. Coast (RC4USCoast)14 have been 
developed to remove the barrier of utilizing WQP data. However, these two datasets are confined to river data 
with a limited range of parameters and lack integration with ocean data.

This study introduces a novel database that builds on enhanced processing steps for water quality data. These 
steps include pairing river chemistry data with discharge and running it through a regression model to esti-
mate daily concentrations and fluxes of various parameters (Fig. 1). Moreover, the database harmonizes river 
and ocean data, with the potential of serving as a central hub for the nGoM research community. The primary 
objective of this database is to expedite and support diverse research related to the nGoM environmental and 
ecological conditions while highlighting the significance of improving reusability of publicly available hydrolog-
ical and oceanographic data.

The database enables local, regional, and Gulf-wide analyses of crucial environmental and ecological param-
eters, facilitating the tracking of river fluxes to the nGoM and the assessment of its ecosystem health. It will 
benefit earth and environmental sciences researchers working on the nGoM region by significantly reducing 
the time required for data compilation and processing. Example research projects that will be facilitated by this 
database include (1) investigating nonpoint source pollution and its impact on coastal primary production, (2) 
analyzing time-series riverine carbonate chemistry and its influence on ocean acidification, (3) exploring the 
supply of essential and toxic metals to the coastal ocean (e.g., iron, lead, aluminum, arsenic, and selenium), (4) 
understanding the plausible impact of estuarine processes affecting the fluvial flux of materials to the coastal 
ocean, and (5) examining the fluxes of rock weathering in this region. Built on a robust framework for data inte-
gration and analysis, this database empowers researchers to conduct more comprehensive studies surrounding 
the nGoM region, ultimately advancing our understanding and management of the nGoM ecosystem.

Methods
River site selection. The Northern Gulf of Mexico watershed is widely known for high nutrient loading 
from both agricultural and industrial runoff as well as having a large human impact in general15,16, yet there have 
been few regional studies. This study encompasses a total of 54 river sites, which are representative of various riv-
ers, streams, and bayous that flow into the nGoM (Fig. 2, Table S1). The rivers in this analysis were selected based 
on two previous studies14,17 which encompasses about 87% of the drainage area to the nGoM from the continental 
US. Specifically, we selected the nearest USGS river monitoring sites along the nGoM coast that offer the longest 
available time-series data. The river sites were split into three regional groups with the West group representing 
sites in Texas, the East group representing sites in Florida, and the North group representing sites in Louisiana, 
Mississippi, and Alabama.

River data mining and analysis. To facilitate the data mining and formatting of all the USGS river data, a 
script was developed in the R programming language, utilizing the EGRET and dataRetrieval packages18. A total 
of 35 water quality parameters were collected from each river site, if available (Table 1: Step 1:2). In cases where 
the flag of “non-detects” were encountered for the parameter, they were quantified as half of the parameter’s 

Fig. 1 The figure demonstrates the workflow used to create the ROcD-nGoM database by mining and 
compiling data from river and ocean datasets in the nGoM region. This process begins with initial data 
preprocessing and cleaning, followed by applying the WRTDS model to river data and flow-weighting the 
outputs. The resulting database combines raw and modelled ConcDay data, which are subsequently time-
averaged to produce monthly and yearly averages. A detailed description of each step is provided in the 
Methods section.
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detection limit concentration18. However, if the units of a parameter could not be determined for the non-detect 
measurement due to multiple units in the sample data, the non-detect was retained with its initial NA value from 
the WQP portal (Table 1: Step 3:4).

To ensure data integrity, several cleaning steps were implemented. Samples taken from mediums other than 
water, estimated samples instead of measured ones, quality control replicates, and samples without an associated 
unit were all removed from the database (Table 1: Steps 5:10).

Harmonization of units was performed, with all parameters (excluding temperature) standardized to mg/l 
(Table 1: Step 11). Nitrogen data was converted to mg/l as total N to simplify analysis and create the longest 
possible time series by combining data with different units. Similarly, phosphorus data was converted to mg/l 
as total P. For alkalinity, the USGS conducted a study that found no statistical difference between 123 pairs of 
filtered and unfiltered alkalinity samples in the Red River19. This finding has also been observed in open ocean 
waters20. Therefore, filtered and unfiltered alkalinity measurements were merged to generate a longer time series. 
Each parameter was further categorized by fraction (e.g., dissolved, total, suspended) (Table 1: Step 12).

To estimate the daily concentration and flux for each parameter, each river sample with that specific param-
eter was paired with discharge data (Table 1: Steps 13:15). Discharge data were mined using the EGRET pack-
age. Three sites that did not have discharge data from the USGS station were matched with the closest (within 
22 km) discharge station on the same river with sufficient data (Table S2). In addition, the discharge for the 
Mississippi and Atchafalaya Rivers was downloaded from the Army Corps of Engineers (https://www.usace.
army.mil/), and the discharge for the Rio Grande River was downloaded from the International Boundary and 
Water Commission (https://www.ibwc.gov/), as there were no USGS long-term daily discharge data reported for 
these river outlets. Subsequently, the parameter, daily discharge, and site information were fed into the Weighted 
Regression on Time, Discharge, and Season (WRTDS) model (Table 1: Step 16). This weighted regression 
approach allows the coefficients of Eq. 1 (see below) to vary across the calibration period and over the range of 
streamflow values. An equation is fitted for each day in the calibration period, with observations weighted based 
on their similarity in terms of time, season, and discharge to the day being calibrated21. The minimum number 
of observations (minNumObs) was set to 50 which is the threshold for the reliability of the regression, while 
the minimum number of uncensored observations (minNumUncen) was set to half of the minimum number 
of observations18. However, for parameters with a limited range of data, such as observations from 1997–1999, 
the number of observations was insufficient to run the regression. In such cases, adjustments were made to the 
model settings for the main nutrients (silica, mixed nitrogen, or phosphorus). Specifically, the settings were 
adjusted to minNumObs = 20 and minNumUncen = 10. These adjustments are detailed in Table S3.

β β β β π β π= + + + + +c t Q t tln( ) ln( ) sin(2 ) cos(2 ) (1)0 1 2 3 4 ε

Equation 1. Weighted regression model for estimating daily concentration where c is concentration, βn are fitted 
coefficients, t is time, Q is mean daily discharge, and ε is the unexplained residual.

The WRTDS model was used to generate estimated continuous daily concentrations (ConcDay) and fluxes 
(FluxDay). One of the advantages of the WRTDS model is its ability to generate flow-normalized data, effec-
tively eliminating random year-to-year variations in discharge from the sample concentrations. In addition 
to generating continuous records with the WRTDS model, we also maintained the raw daily average concen-
tration, denoted as “ConcAve”. This metric represents the measured average concentration for each day, typi-
cally assessed at weekly to monthly intervals. We then calculated the raw daily fluxes, “FluxAve”, by multiplying 
“ConcAve” by the daily discharge (Q) as described in Step 17. We further manually weighted the concentration 
data by discharge to calculate a flow-weighted mean concentration per month, season, and year (Eq. 2) (Table 1: 
Step 18:21). This is a useful method especially for time-series analysis because it directly accounts for the influ-
ence of stream inflow which can significantly vary over different time scales.
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Fig. 2 USGS river sites included in the ROcD-nGoM database plotted with their corresponding watershed 
shapefiles. Note that some watersheds (e.g., the big Mississippi watershed) are only partially displayed due to the 
focus on the Gulf Coast region.
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Equation 2. Manual Flow weighted (normalized) equation. Q is the discharge in cubic meters per second and Conc 
is concentration in mg/l.

GcOOS data. GCOOS is a component of the larger Integrated Ocean Observing System (IOOS) in the U.S. 
It encompasses a vast network of over 2,000 sensors deployed by numerous data providers, e.g. universities, state 
and federal government, and energy/oil companies. The GCOOS nutrient portal (https://wq.gcoos.org/nutri-
ents/) serves as a repository for data from 80 organizations, including Chl-a (Fig. 3), oxygen, nutrients, pH, salin-
ity, and water temperature. Additionally, GCOOS provides data on currents, wind, sea surface height, turbidity, 
and wave characteristics. Similar to the river data, the GCOOS data is organized based on the five-time columns 
as seen in Table 1: Step 19. To ensure consistency, the data was cleaned and standardized to match the format of 
the river data. All units of chemical species were converted to mg/l, particularly for chlorophyll and other chem-
ical measurements. GCOOS also provides acceptable ranges of values for most water quality parameters (https://
data.gcoos.org/certification/GCOOS_DMAC_DMS.pdf), which were utilized to exclude concentrations or values 
that fell outside the acceptable range. Our analysis focused on surface water, specifically the top 100 meters of the 
water column, while samples from deep water were excluded from consideration.

Harmonization step Details

Step 1 Read in WQP data readWQPqw() function

Step 2 Read in Sample format readWQPSample(), this is the format for running WRTDS model but lacks important 
metadata

Step 3 Identify units in data Reporting units can change due to changing protocol, methods…

Step 4 Non-detects

-Identifying if non-detects are in data
-readWQPqw() has a flag for non-detects, but no unit or detection limit info for non-detects
-readWQPSample() has detection limit info for samples, but no unit info
-If there is only one unit in readWQPqw, non-detects are kept with flag
-If there are multiple units and units for non-detect are unknown, these values were dropped

Step 5 Result Type Samples that were estimated instead of measured were dropped

Step 6 Medium Samples that were from any other media than water were dropped

Step 7 Activity type Samples that were for quality control replication were dropped

Step 8 Units If unit information was missing or could not be converted to mg/l, sample was dropped

Step 9 Fraction Identifying if sample has distinct fractions (filtered/unfiltered) in data, samples from bed 
sediment were dropped

Step 10 Assigning fraction info Temperature data assigned fraction = None
Total and dissolved fraction combined for alkalinity

Step 11 Conversions Units converted to mg/l

Step 12 Separate fractions Each fraction of data run through WRTDS model separately

Step 13 Calculate daily 
concentration WRTDS takes daily concentration, some sites have multiple samples per day

Step 14 Read in daily 
discharge readNWISDaily(), within sample

Step 15 Merge report eList with INFO, Daily, and Sample data

Step 16 Run modelEstimation Run WRTDS model to derive continuous daily concentration

Step 17 Calculate FluxAve FluxAve (kg/day) = ConcAve*Q*86.4

Step 18 Add metadata Add data source, site number, parameter, unit, fraction, drainage area, latitude and longitude 
to dataframe

Step 19 Add time columns Add columns for year, month, yearMonth, Season, yearSeason

Step 20 Time-averaging Averaging parameters per different time range

Step 21 Flow Weighting Manual flow weighting of ConcAve and ConcDay averaged by different time ranges

Table 1. Summary of river database harmonization.

Fig. 3 Spatial distribution of GCOOS Chl-a data. The color bar shows the range of years for the available data.
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Satellite data. Satellite remote sensing is a widely used technique in oceanography for estimating chloro-
phyll levels. The SeaWiFS instrument on the OrbView-2 satellite offers data records spanning approximately 13 
years, from 1997-09-04 to 2010-12-11. With eight spectral bands ranging from 412 to 865 nm, this instrument 
collects data at a spatial resolution of 4 kilometers with a revisit time of 1 day. For this project, monthly stage 
3 mapped data (in the NetCDF format) with a spatial resolution of 9 kilometers was obtained from the NASA 
Ocean Color portal (https://oceancolor.gsfc.nasa.gov/) for the Gulf of Mexico region. Another source of remotely 
sensed chlorophyll data is the MODIS instrument on the Aqua satellite, which was launched in 200222. This 
instrument provides data records from 2002-07-04 to the present, covering approximately 20 years. The MODIS 
instrument captures data across 36 spectral bands with spatial resolutions of 250 m, 500 m, and 1000 m, depend-
ing on the spectral band. Similarly, for this project, monthly stage 3 mapped data (in the NetCDF format) with a 
spatial resolution of 4 kilometers was acquired from the NASA Ocean Color portal for the Gulf of Mexico region. 
To extract chlorophyll data from NetCDF files, an R script was adapted23. After cleaning, the extracted data from 
satellite sources was standardized to match the format of the river data and GCOOS data. The units were con-
verted to mg/l to align with the units used for the GCOOS chlorophyll data.

Data Records
The final database, ROcD-nGoM, is publicly available on Zenodo24 with a Creative Commons Attribution 4.0 
International (CC BY 4.0) license. A README file provides guidance and information for the database. The data 
is provided in two formats: (1) raw with outlier flags and (2) cleaned and time averaged. The first raw format 
includes the “river_flagged” and “ocean_flagged” folders, and the second clean format includes the “river_time_
averaged” and “ocean_time_averaged” folders. In the raw format, daily averaged concentrations are provided 
for the USGS and GCOOS data, while the satellite product offers monthly data. Two specific flags are employed: 
“outlier_99.5” for concentrations exceeding the 99.5th percentile, and “outlier_0.5” for concentrations falling 
below the 0.5th percentile. These percentiles are calculated across all sites for each respective parameter. For 
the USGS river data, outlier flags are applied to “ConcAve,” “ConcDay,” and “Q.” The range designation for 
“ConcDay” is determined based on the distribution of the actual raw measurements (“ConcAve”). In the case of 
ocean data, outlier flags are assigned to each parameter except for wind/current direction, which ranges from 0 
to 360 degrees.

Table 2 presents the time range and number of observations for the raw river data, while Table 3 provides the 
same details for the ocean parameters.

The following variables are included in the river_flagged folder:

•	 data_source: source of the water quality data.
•	 siteNumber: the site number of the USGS site the data was collected from.
•	 latitude: latitude in decimal degrees format.
•	 longitude: longitude in decimal degrees format.
•	 drainage_area: the area of the drainage basin in km2.
•	 parameter: the water quality parameter name.
•	 conc_unit: the concentration unit which was converted to mg/l except for temperature.
•	 fraction: filtration status of sample.
•	 Date: date the sample was collected (format: YYYY-MM-DD).
•	 Month: month of the year that the sample was collected (format: MM).
•	 Season: season of the year that the sample was collected. Each season is indicated by each number, with num-

ber 3 representing months 3,4, and 5 (spring), 6 representing months 6,7, and 8 (summer), 9 representing 
months 9,10, and 11 (fall), and 12 representing months 12,1, and 2 (winter). (format: MM).

•	 Year: calendar year the sample was collected (format: YYYY).
•	 yearMonth: unique year + month combination (format: YYYY-MM-01). 01 is a placeholder for the day.
•	 yearSeason: unique year + season combination (format: YYYY-MM-01). 01 is a placeholder for the day.
•	 Q: daily river discharge in units m3/s
•	 ConcAve: the raw daily average concentration measurement of parameter.
•	 ConcDay: the WRTDS model daily concentration estimate of parameter.
•	 FluxAve: the ConcAve * Q in units of kg/day.
•	 FluxDay: the WRTDS daily flux estimate in units of kg/day.
•	 Uncen: represents the detection limit. Uncen = 1 means the concentration is above the detection limit, while 

Uncen = 0 means the concentration is below the detection limit (the concentration then is estimated as half 
of the detection limit).

•	 outlier_99.5_concAve: outlier flag for ConcAve concentration. If the value is above the 99.5th percentile, the 
flag column will say “Outlier”, if it is not an outlier, the column is left blank.

•	 outlier_99.5_concDay: outlier flag for ConcDay concentration based on distribution of raw ConcDay values. 
If the value is above the 99.5th percentile, the flag column will say “Outlier”, if it is not an outlier, the column 
is left blank.

•	 outlier_99.5_Q: outlier flag for daily Q. If the value is above the 99.5th percentile, the flag column will say 
“Outlier”, if it is not an outlier, the column is left blank.

•	 outlier_0.5_concAve: outlier flag for ConcAve concentration. If the value is below the 0.5th percentile, the 
flag column will say “Outlier”, if it is not an outlier, the column is left blank.

•	 outlier_0.5_concDay: outlier flag for ConcDay concentration based on distribution of raw ConcDay values. 
If the value is below the 0.5th percentile, the flag column will say “Outlier”, if it is not an outlier, the column 
is left blank.

https://doi.org/10.1038/s41597-024-04338-1
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Parameter Fraction Time Range # of ConcAve observations # of ConcDay estimates

Temperature, water None 1939–2021 12,034 780,448

Temperature, air None 1969–2021 1,265 118,709

Oxygen Dissolved 1965–2021 9,867 664,441

H ion Total 1939–2021 14,985 784,763

Alkalinity Combined 1931–2021 13,046 678,341

Carbon Total 1971–1978 122 6,335

Carbon Suspended 1966–2021 1,323 94,892

Organic carbon Total 1968–2021 7,917 711,198

Organic carbon Dissolved 1966–2021 2,880 266,522

Organic carbon Suspended 1966–2021 1,555 159,132

Inorganic carbon Total 1971–1978 67 3,550

Inorganic carbon Dissolved 2018–2021 57 1,243

Inorganic carbon Suspended 1969–2021 1,952 135,448

Carbon dioxide Dissolved 1944–2021 13,563 671,243

Bicarbonate Total 1931–2021 14,924 729,840

Bicarbonate Dissolved 1966–2021 2,233 155,438

Carbonate Dissolved 1966–2021 351 26,561

Mixed nitrogen Total 1966–2021 14,308 943,673

Mixed nitrogen Dissolved 1966–2021 2,488 234,288

Organic nitrogen Total 1966–2021 16,083 1,051,439

Organic nitrogen Dissolved 1966–2021 2,430 229,907

Nitrate + Nitrite Total 1966–2021 7,882 585,068

Nitrate + Nitrite Dissolved 1966–2021 4,451 326,492

Kjeldahl nitrogen Total 1966–2021 21,391 1,271,620

Kjeldahl nitrogen Dissolved 1966–2021 6,107 403,969

Kjeldahl nitrogen Suspended 1979–1981 22 940

Ammonia + Ammonium Total 1966–2021 8,651 663,683

Ammonia + Ammonium Dissolved 1966–2021 4,705 489,685

Nitrate Total 1950–2021 5,850 390,608

Nitrate Dissolved 1931–2021 9,952 841,209

Nitrite Total 1966–2021 4,934 445,358

Nitrite Dissolved 1939–2021 3,393 339,303

Phosphorus Total 1966–2021 16,184 994,499

Phosphorus Dissolved 1966–2021 6,445 415,793

Orthophosphate Total 1963–2021 3,117 273,300

Orthophosphate Dissolved 1939–2021 7,070 538,502

Silica Dissolved 1944–2021 13,392 681,384

Calcium Dissolved 1931–2021 13,458 665,822

Magnesium Dissolved 1944–2021 13,789 678,403

Sodium Dissolved 1950–2021 12,041 654,578

Potassium Dissolved 1950–2021 10,198 636,726

Chloride Dissolved 1931–2021 15,142 713,021

Sulfate Dissolved 1931–2021 14,788 727,231

Iron Total 1952–1973 644 30,808

Iron Dissolved 1950–2021 14,912 1,236,904

Iron Recoverable 1969–2021 1076 188.961

Lead Suspended 1969–2021 471 115,614

Lead Recoverable 1969–2016 173 38,538

Aluminum Dissolved 1963–2021 897 131,097

Fluoride Dissolved 1939–2021 11,415 624,546

Arsenic Total 1969–2021 1,220 119,746

Arsenic Dissolved 1966–2021 8,006 697,097

Arsenic Suspended 1969–2021 322 57,834

Boron Dissolved 1966–2021 1,355 96,100

Selenium Total 1969–2021 156 44,090

Selenium Dissolved 1966–2021 1,283 146,183

Total 378,342 24,523,351

Table 2. River parameter summary for the database.
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•	 outlier_0.5_Q: outlier flag for daily Q. If the value is below the 0.5th percentile, the flag column will say “Out-
lier”, if it is not an outlier, the column is left blank.

The following unique variable groups (not included in previous description) are included in the river_time_
averaged folder:

•	 Q_yearMonth, Q_yearSeason, Q_year, Q_month, Q_Season: The daily discharge averaged by yearMonth, 
yearSeason, year, month, and season for each site.

•	 ConcDay_yearMonth, ConcDay_yearSeason, ConcDay_year, ConcDay_month, ConcDay_season: the 
WRTDS model daily concentration averaged by yearMonth, yearSeason, year, month, and season for each 
site.

•	 FluxDay_yearMonth, FluxDay_yearSeason, FluxDay_year, FluxDay_month, FluxDay_season: the 
WRTDS model daily flux averaged by yearMonth, yearSeason, year, month, and season for each site.

•	 FN_ConcDay_yearMonth, FN_ConcDay_yearSeason, FN_ConcDay_year, FN_ConcDay_month, FN_
ConcDay_season: the WRTDS model daily concentration averaged and flow weighted by yearMonth, year-
Season, year, month, and season for each site.

•	 ConcAve_yearMonth, ConcAve_yearSeason, ConcAve_year, ConcAve_month, ConcAve_season: the raw 
daily concentration averaged by yearMonth, yearSeason, year, month, and season for each site.

•	 ConcAve_counts_yearMonth, ConcAve_counts_yearSeason, ConcAve_counts_year, ConcAve_counts_
month, ConcAve_counts_season: counts of the number of observations of the raw daily concentration in 
each time average for each site. This is included because some time-averages are only based on one or two 
observations to represent a whole month, season, or year.

•	 FluxAve_yearMonth, FluxAve_yearSeason, FluxAve_year, FluxAve_month, FluxAve_season: the Con-
cAve * Q in units of kg/day, averaged by yearMonth, yearSeason, year, month, and season for each site.

•	 FN_ConcAve_yearMonth, FN_ConcAve_yearSeason, FN_ConcAve_year, FN_ConcAve_month, FN_
ConcAve_season: the raw daily concentration averaged and flow weighted by yearMonth, yearSeason, year, 
month, and season for each site.

The following variables are included in the ocean_flagged folder (excluding variables previously introduced):

•	 conc_yearMonth: for the satellite data, this is the raw observation provided by NASA in yearMonth.
•	 conc_daily: for the GCOOS data, this is the daily mean of the raw observations.
•	 direction_daily: both ocean currents and winds have multiple parameters associated with them. They are 

given separate titles other than conc_daily in order to distinguish them. Direction is provided in units of 
degrees (0–359° N).

•	 speed_daily: For both daily current and wind speed. Current speed in units (cm/s) while wind speed in units 
(m/s).

•	 upwell_daily: This parameter is only in the currents file and represents vertical currents in units (cm/s).
•	 outlier_99.5: outlier flag for concentration. If the value is above the 99.5th percentile, the flag column will say 

“Outlier”, if it is not an outlier, the column is left blank.
•	 outlier_0.5: outlier flag for concentration. If the value is below the 0.5th percentile, the flag column will say 

“Outlier”, if it is not an outlier, the column is left blank.

Parameter Source Time range # of observations

Chlorophyll GCOOS 1972–2021 48,333

Chlorophyll MODIS 2002–2021 9,826,629

Chlorophyll seaWiFS 1997–2010 1,724,074

Oxygen GCOOS 1922–2021 396,270

Phosphorus GCOOS 1968–2014 28,917

Nitrogen GCOOS 1969–2013 931

Nitrate GCOOS 1972–2014 14,277

Nitrite GCOOS 1968–2014 9,929

Nitrate + Nitrite GCOOS 1969–2014 4,289

Wave GCOOS 2008–2019 819,601

Turbidity GCOOS 2008–2021 48,006

Sea surface height GCOOS 2008–2019 206,607

Wind GCOOS 2001–2021 365,600

Current GCOOS 1995–2021 69,004

Temperature GCOOS 1956–2021 369,913

pH GCOOS 1962–2014 398,085

Salinity GCOOS 1922–2021 338,261

Table 3. Ocean parameter summary for the database.
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•	 outlier_99.5_speed, outlier_0.5_speed, outlier_99.5_upwell, outlier_0.5_upwell: outlier flag columns for 
speed and upwelling. If the value is above the 99.5th percentile, the flag column will say “Outlier”, if it is not 
an outlier, the column is left blank.

•	 network: this column represents the original data source of the data provided to GCOOS.
•	 platform: unique identifiable platform from which the measurement was collected.

The following unique variable groups (not included in previous description) are included in the ocean_time_
averaged folder:

•	 conc_yearMonth, conc_yearSeason, conc_year, conc_month, conc_season: the raw daily concentration of 
each parameter averaged by yearMonth, yearSeason, year, month, and season for each site.

•	 speed_yearMonth, speed_yearSeason, speed_year, speed_month, speed_season: the raw daily current (or 
wind) speed averaged by yearMonth, yearSeason, year, month, and season for each site.

•	 direction_yearMonth, direction_yearSeason, direction_year, direction_month, direction_season: the raw 
daily current (or wind) direction averaged by yearMonth, yearSeason, year, month, and season for each site.

•	 upwell_yearMonth, upwell_yearSeason, upwell_year, upwell_month, upwell_season: the raw daily upwell 
speed averaged by yearMonth, yearSeason, year, month, and season for each site.

technical Validation
Raw data (concave) validation. Random river sites (Alafia River and Withlacoochee River) from both 
this database and the existing RC4USCoast database14 were chosen for comparison. Total unfiltered nitrogen and 
phosphorus from the RC4USCoast database were converted to mg/l before comparison. For pairwise analysis, 
we merged the two datasets by aligning entries from the same year and month. Figure 4 shows the database com-
parison with ROcD-nGoM (this study) in red and RC4USCoast in blue. Overlapping points are shown in purple. 
Even with added uncertainties for converting units, both datasets visually display a notable agreement, indicating 
that our data mining and harmonization is accurate. The correlation analysis further revealed a high correlation 

Fig. 4 ROcD-nGoM (this Database) and RC4USCoast data comparison. Year-month unfiltered raw TN 
and TP comparison for two sites: (a) Alafia River TN, (b) Alafia River TP, (c) Withlacoochee River TN, (d) 
Withlacoochee River TP. The data from our ROcD-nGoM are shown in red, and the data from RC4USCoast are 
shown in blue. The purple colour indicates the data points that overlap between the two databases.
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between the two datasets for both total nitrogen and phosphorus at the random river sites. The correlation coeffi-
cient (r) exceeds 0.96 with a p-value smaller than 1e-12 across all scenarios (Fig. 4), confirming the alignment of 
our compiled data with the RC4USCoast database.

concDay validation. In order to ensure the reliability of the ConcDay estimates, the distributions of the raw 
observations (ConcAve) and daily estimates (ConcDay) for all of the data across all of the river sites are provided 
along with time-series plots. Figure 5 shows the distributions of the unfiltered TN and TP concentration across 
all of the sites. The ConcDay estimated concentration follows the same distribution as the ConcAve raw data 
(Fig. 5). The ConcDay of TN demonstrates a distribution of 0.23 mg/L at the 0% quantile, 1.18 mg/L at the 50% 
quantile, and 8.75 mg/L at the 100% quantile. This distribution closely mirrors that of the ConcAve of TN, which 
shows 0.23 mg/L at the 0% quantile, 1.11 mg/L at the 50% quantile, and 8.75 mg/L at the 100% quantile. Similarly, 
ConcDay of TP demonstrates a distribution of 0.01 mg/L at the 0% quantile, 0.12 mg/L at the 50% quantile, and 
6.30 mg/L at the 100% quantile. This distribution also closely mirrors that of the ConcAve of TP, which shows 
0.01 mg/L at the 0% quantile, 0.11 mg/L at the 50% quantile, and 6.30 mg/L at the 100% quantile. The capabil-
ity of the modelled ConcDay to capture seasonal cycles was assessed by comparing its monthly averaged value 
with monthly averaged river raw data (ConcAve). Figure 6 shows the seasonal difference between the raw data 
(ConcAve) and ConcDay in the TN and TP data. Seasonal and interannual variations are captured by both the 
raw data the modelled ConcDay data. Notice the larger fluctuations with the monthly raw data (ConcAve) com-
pared to the monthly modelled data (ConcDay). This observation aligns with the smooth nature of the WRTDS 
model, which effectively eliminates random year-to-year variations in discharge from the sample concentrations. 
Accordingly, there should be a correlation between ConcAve and ConcDay, though the correlation coefficient 

Fig. 5 Histograms of raw data (ConcAve) and ConcDay of nutrient parameters. (a) raw TN data, (b) TN 
ConcDay, (c) raw TP data, (d) TP ConcDay. The vertical dashed lines represent the mean concentration in mg/l.
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is not expected to reach 1. For the TN and TP examples, the correlation analysis between the two variables, 
ConcAve and ConcDay, revealed a strong correlation for nitrogen (r = 0.57; p-value < 1e-10) and a weaker, yet 
statistically significant, correlation for phosphorus (r = 0.27; p-value = 0.002).

Limitations and directions. It is important to note that the WRTDS model’s reliability decreases for sample sizes 
lower than 50 observations18. In this analysis, certain sites did not meet the 50-observation threshold, leading 
to adjustments in the model settings. These specific sites where the model settings were adjusted were identified 
in the supplementary info (see Table S1) and users can use at their own discretion. Another important consid-
eration is the handling of non-detects in the database. Dealing with non-detects is a challenging task, and while 
there is no definitive approach, the standard practice in environmental science is to utilize half of the detection 
limit25. The readWQPSample() function provided information on the detection limits, allowing for the inclusion 
of non-detects in the WRTDS model whenever possible. Our analysis reveals that the majority of parameters 
(88%) in our compiled database have fewer than 10% of observations below the detection limit, underscoring 
the completeness and reliability of our database (Table S4). Specifically, essential river parameters including 
alkalinity, pH, bicarbonate, calcium, magnesium, sodium, potassium, sulfate, chloride, kjeldahl nitrogen, mixed 
nitrogen, nitrate, nitrite, orthophosphate, and phosphorus all show fewer than 10% of observations below this 
threshold. When analyzing data of certain elements such as suspended inorganic carbon, dissolved aluminum, 
and dissolved selenium, it is crucial to consider that more than 15% (but still less than 40%) of observations fall 
below the detection limit. This relatively large proportion of non-detects could influence the interpretation and 
application of the data, and should be carefully accounted for in any analyses or conclusions drawn from these 
parameters.

Moreover, it is essential to acknowledge potential sources of variability stemming from evolving methodol-
ogies, technologies, in situ sensor calibrations, and satellite algorithms used for measuring chemical parameters 
and environmental metrics over time. Our database leverages historical data dating back to the 1930s, offering a 
unique perspective on relatively pristine environmental conditions. However, using older data necessitates care-
ful consideration of the methodologies employed at the time of collection. It has been argued that the measure-
ment of pH has improved over time26. The accuracy of trace metal measurements before year 2000, particularly 
in their dissolved forms, can be affected by errors in the preparation and filtering processes, as outlined in pre-
vious studies27–29. Advances in analytical techniques and instrumentation can introduce nuances and biases into 
the database, affecting the comparability of data collected across different periods. Moreover, despite advances in 
measurements, there has been a persistent bias in the measurement of certain key river parameters, such as pH 
and alkalinity. The reliability of pH data from low ionic strength freshwaters has been questioned due to shifts 
toward lower values, which impact associated CO2 calculations along with uncorrected high organic alkalinity30. 
The same study also provides a roadmap for correcting errors, which can be particularly useful for users looking 
to improve the accuracy of carbon speciation reconstruction from USGS data. Users are encouraged to consult 
this reference to mitigate errors effectively.

Given these complexities, users are encouraged to approach the database with a critical mindset. Detailed 
documentation for each station’s data source and parameters within our database allows users to thoroughly 
explore data quality and methodological specifics. It is essential for users to consider the variations in method-
ologies and technologies used in chemical parameter measurements, along with changes in sensor calibrations 
and satellite algorithms. These factors, along with previously outlined uncertainties, emphasize the need for 
meticulous interpretation and application of the data in environmental research and policymaking. Our efforts 
have been focused on maintaining transparency in data compilation and thoroughly documenting data sources 

Fig. 6 Average monthly comparison of ConcAve and ConcDay. (a) example timeframe with TN data, (b) 
example timeframe with TP data.
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to facilitate this process. Looking ahead, we recommend that data scientists and environmental scientists col-
laborate closely to develop innovative methods for enhancing the assessment and improvement of water quality 
measurements.

Usage Notes
While this database focuses on the nGoM rivers, the script and harmonization process can be used/adapted for 
other regional rivers with WQP/USGS data.

code availability
The open-source programming language R was used for data mining, harmonization, and database production. 
The R script for compiling the USGS data and the final river-ocean database are hosted on Zenodo24 (https://
zenodo.org/records/10152141), as well as on GitHub (https://github.com/OceanArmos/ROcD-nGoM/tree/
main).
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