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A B S T R A C T

Climate change is an ongoing and intensifying threat. Previous studies indicate that U.S. rivers are undergoing 
salinization and alkalinization driven by both natural (e.g., temperature and precipitation) and anthropogenic (e. 
g., population density) factors. In this study, random forest models were developed to predict how the salinity (i. 
e., sodium) and alkalinity fluxes from 226 U.S. rivers will vary with changing population density and climatic 
forcings (i.e., temperature and precipitation) from 2040 to 2100 for three socioeconomic development pathways. 
The models predicted a lower future sodium flux in the northern U.S., likely due to reduced winter road salting 
under projected warmer winter. In the southern and western U.S., where road salting is uncommon, the models 
predicted little or no change in future sodium flux, however, a projected warmer and drier climate might 
exacerbate soil salinization in these regions. The models also indicated that carbonate weathering rates are 
inhibited when temperatures exceed 10 ◦C, leading to a lower future alkalinity flux in carbonate-rich watersheds 
at high temperatures. In siliciclastic-dominated or organic carbon-rich watersheds, rising temperatures are 
associated with increased riverine alkalinity flux, likely through the acceleration of silicate weathering and 
decomposition of soil organic carbon. Higher precipitation and enhanced transport capacity were generally 
deemed to contribute to higher solute fluxes before reaching a plateau. This study underscores the urgency for 
policymakers and scientists to adapt strategies for managing rivers, focusing on mitigating the impacts of river 
salinization and shifts in riverine alkalinity driven by global warming.

1. Introduction

Over the past decades, global and U.S. river has been experiencing 
salinization and alkalinization due to anthropogenic salt input (e.g., 
road salt, mining waste), human-accelerated mineral weathering 
(Kaushal et al 2017, 2018; Haq et al., 2018) and associated feedbacks. In 
particular, Kaushal et al. (2018, 2017) and Haq et al. (2018) suggested 
that river salinization enhanced the ion exchange on the surface of 
building concrete and rock, leading to more alkalinity released into river 
within human-dominated watersheds, which can threaten drinking 
water supplies, impair river biodiversity, accelerate corrosion of infra-
structure, and mobilize inorganic and organic contaminants (DeVilbiss 
et al., 2021; Duan and Kaushal, 2015; Kaushal, 2016; Hintz and Relyea, 

2019). For example, elevated salinity level harms sensitive aquatic 
species, e.g., fishes and amphibians by reducing their populations and 
disrupting food webs. In addition, high salinity can degrade the quality 
of drinking water sources, potentially increasing costs and energy use for 
desalination and water treatment. Utilizing the same datasets as Kaushal 
et al. (2018), E et al. (2023) built a machine learning model – Random 
Forest (RF) to predict historical salinity and alkalinity fluxes in 226 U.S. 
watersheds from 1942 to 2021 using an array of watershed properties (i. 
e., hydrology, climate, geomorphology, soil chemistry, geology, land use 
and cover), which indicated that anthropogenic activities (e.g., urbani-
zation) and natural processes (e.g., runoff, bedrock geology) were the 
primary drivers explaining the spatial variability in salinity and alka-
linity fluxes across U.S. rivers over the past 80 years, respectively. 
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Mediated by rock weathering, alkalinity in terrestrial water systems 
dominates net carbon fluxes from land to ocean and, as such, has 
important implications for climate change: terrestrial riverine alkalinity 
acts as the primary natural mechanism regulating carbon dioxide levels 
in the atmosphere (Meybeck, 1987; Berner, 2004).

Human activities, e.g., fossil fuel combustion and urbanization, are 
predicted to drive up the average global temperature at the end of 21st 
century by 1.5–2.7 ◦C above the pre-industrial level (Lenton et al., 
2023). It is also anticipated that regional and global climate patterns will 
be largely reshaped, such as the snowfall line moving to higher latitudes 
(Quante et al., 2021) and shifts in global precipitation patterns and 
regional hydroclimate (Dore, 2005). Changing climate patterns will 
both directly and indirectly impact river salinity/alkalinity. For 
example, northward migration of snowfall will likely lead to less use of 
road salt in mid-latitude regions, and may therefore mitigate the trend of 
river salinization (Stirpe et al., 2017), while extremely high tempera-
tures and frequent droughts due to less precipitation might result in 
severe soil salinization and alkalinization in certain regions (Perri et al., 
2020; Perri, 2022; Stirpe et al., 2017). In the regions with increased 
precipitation, higher erosion and river transport capability might deliver 
more alkalinity to rivers and expose more fresh rock to erosion and 
weathering (Penman et al., 2020; Isson et al., 2020; Berner, 2004). 
Population density is also projected to vary across space and time 
throughout the 21st century (Wang et al., 2022b; Chen and Mueller, 
2018). Changing population density will not only alter the direct salt 
input to rivers through urbanization (E et al., 2023), but also impact 
river water chemistry through land use changes and agricultural activ-
ities, such as fertilizer usage and soil plowing (Hansen et al., 2018; 
Thorslund et al., 2021).

Future projections of climatic forcing (i.e., temperature and precip-
itation) and population can vary significantly depending on assumptions 
about how human society will develop. Duan and Kaushal (2015)
emphasized a warming climate will increase carbon and nutrient fluxes 
from sediments in streams across various land uses. Lehmann et al. 
(2023) revealed that weathering flux to the ocean could significantly 
increase under new climate patterns as early as 2100, by up to 68%, 
depending on the environmental conditions. Welsch et al. (2006) sug-
gested that soil CO2 concentrations have the potential to increase as 
climate gets warmer and wetter leading to enhanced soil weathering. 
Previous studies highlight the critical need to further understand of how 
climate change will impact alkalinity variation in the future under 
different Shared Socioeconomic Pathways (SSPs). SSPs are widely used 
in climate change modeling [e.g., Coupled Model Intercomparison 
Project Phase 6 (CMIP6)] to describe potential pathways of future so-
cioeconomic development (O’Neill et al., 2010; Riahi et al., 2017). Each 
SSP is defined based on socioeconomic development indices such as 
demographics, economic development, and urbanization as provided by 
the International Institute for Applied Systems Analysis (Kc and Lutz, 
2017; Riahi et al., 2017). In particular, SSP126, SSP370, and SSP585 
represent development pathways of sustainability, regional rivalry, and 
fossil-fueled development, respectively (Riahi et al., 2017). Population 
density for SSP126, SSP370, and SSP585 will show a slow increase, a 
rapid decrease (due to increased regional conflict and/or war), and a 
rapid increase, respectively (Kc and Lutz, 2017). Therefore, different 
development scenarios reflect varying levels of human activity and 
greenhouse gas emissions, which modulate future climate change, sub-
sequently impacting future salinity and alkalinity fluxes in U.S. rivers. 
Given the critical role of river salinity and alkalinity in deciphering the 
global carbon cycle and managing watershed ecosystem services, it is 
essential to accurately predict how salinity and alkalinity will vary with 
changing climate and population density in the future.

In this study, we used machine learning models to predict future 
salinity and alkalinity fluxes from U.S. rivers from 2040 to 2100 under 
different projected socioeconomic pathways. This study builds on the 
published preliminary assessment by E et al. (2023), which examined 
the relationship between watershed properties and salinity and 

alkalinity fluxes across 226 U.S. watersheds. We compiled sodium and 
alkalinity concentrations from 226 U.S. Geological Survey (USGS) river 
monitoring sites across the U.S. (Kaushal et al., 2018, E et al., 2023). 
Sodium, rather than chloride, was selected as the salinity proxy to 
maintain consistency with previous studies. Various watershed proper-
ties including climate, geomorphology, geology, soil chemistry, land 
use, and land cover were compiled/calculated for each watershed and 
used as predictor features in the machine learning model. The objective 
of this analysis is to gain further understanding of how human activities 
and climatic forcings interact to regulate future river salinization and 
alkalinization in U.S. rivers. Findings from this study can help guide the 
design of mitigation and adaptation policies to address the challenges 
posed by inevitable climate change and global warming.

2. Materials and methods

2.1. Random forest model and SHapley Additive exPlanation (SHAP) 
method

In this study, we built Random Forest (RF) models to predict sodium 
and alkalinity fluxes from U.S rivers using watershed properties. The RF 
model, a popular machine learning technique introduced in the 1990s 
(Tin, 1995), offers several advantages and strong performance in 
addressing complex research questions. These advantages include its 
capability to handle non-linear relationships between variables, provide 
insight into variable importance, avoid overfitting, and require minimal 
dataset preprocessing (e.g., Tyralis et al., 2019; Mimeau et al., 2024; 
Pazola et al., 2024). Detailed descriptions of the RF model can be found 
in the literature (e.g., E et al., 2023). An RF regressor makes predictions 
by combining multiple decision trees. Each decision tree makes an in-
dependent prediction on the target variable (e.g., sodium or alkalinity 
flux) based on a random subset of input data. In each tree, a random set 
of predictor variables (i.e., watershed properties) is selected at each split 
to divide the training data (Breiman, 2001). The RF model must be 
carefully trained and optimized to ensure robust predictions on new data 
(i.e., unseen dataset). Here, the RF model was trained using 10-fold 
cross-validation, during which three hyperparameters were fine-tuned, 
i.e., num.trees (i.e., number of sub-models or trees), min.node.size (i. 
e., minimal size of the tree branch in each sub-model), and mtry (i.e., 
number of predictor variables selected at each split). The optimal 
hyperparameters (Table S1) were determined by minimizing the mean 
squared error (MSE) in the training phase with respect to num.trees 
(100–1500), min.node.size (1–15), and mtry (1–15). Model perfor-
mance was assessed by comparing prediction values with the ground-
truth values in hold-out datasets. The development of the RF model was 
implemented in R using the “mlr” package (Bischl et al., 2016).

Partial Dependence Plots (PDP) were used to visualize the relation-
ship between sodium or alkalinity flux and each important predictor 
variable (Le et al., 2019). In addition, SHapley Additive exPlanations 
(SHAP) values (Lundberg and Lee, 2017) were calculated for each pre-
dictor feature using R packages, including "fastshap”, "mlr”, and 
"ranger”. SHAP values, based on game theory, assign an importance 
value to each feature in a model, allowing the assessment of how indi-
vidual features and their interactions impact the prediction of the target 
variable. SHAP Dependence Plots (SDPs) (Lundberg et al., 2020) were 
generated using the R package "SHAPforxgboost” to visualize SHAP 
values.

2.2. Datasets

Except for future climate forcings and population density, all other 
datasets discussed in this study are from E et al. (2023), which compiled 
salinity and alkalinity concentrations from the Water Quality Portal 
(Read et al., 2017) for a total of 226 USGS river monitoring sites across 
the U.S.: Northeast (n = 43), Southeast (n = 31), Midwest (n = 62), 
Northwest (n = 21), Southwest (n = 65), and Pacific (n = 4) (Fig. 1). 
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These sites were selected because they reported at least 30 years of 
continuous river chemistry data between 1942 and 2021. Before feeding 
the data in the RF model, E et al. (2023) aggregated daily sodium and 
alkalinity measurements by year and month before calculating the 
annual-averaged monthly water chemistry data, i.e., each site had at 
most twelve data points. After aggregation, a total of 2685 sodium and 
2691 alkalinity measurements were retained. These calculated 
monthly-aggregated concentrations (in unit of mg/L) were then con-
verted to monthly flux in unit of mg per km2 per month following 
Equation (1). 

F=
IC × D × 28.32 liter

ft3 × 3600 second
hour × 24 hour

day × 30 day
month

WA
(1) 

where F represents sodium or alkalinity flux (mg/km2-mo), IC is the 
monthly chemical concentration (mg/L), D denotes river discharge (ft3/ 
sec) while WA is the watershed area (km2). For alkalinity flux, it is 
expressed as mg CaCO3/km2-mo. The constants of 28.32, 3600, 24, and 
30 are unit conversion factors. For each site, E et al. (2023) delineated 
their corresponding watersheds. Then the average value of each of the 
32 watershed properties (Table S2) was calculated for each watershed 
based on publicly accessible datasets. E et al. (2023) proposed a work-
flow to select a subset of 18 features by removing redundant features and 
retaining relevant features based on statistical analysis and domain 
knowledge, among which three predictor features (runoff, soil moisture, 
and impervious surface area) were not included due to the lack of 
high-resolution (1 km) future data. The omission of these three features 
did not substantially reduce RF model performance in predicting sodium 
and alkalinity fluxes (refer to section 3.1 for details). The 15 remaining 
features include climate (n = 2, Temperature and Precipitation), geo-
morphology (n = 2, Erosion Rate and Elevation), soil chemistry (n = 2, 
Soil Organic Carbon and Soil pH), geology (n = 5, Carbonate Sediment, 
Siliciclastic Sediment, Unconsolidated Sediment, Igneous Basic, and 
Metamorphic), land use (n = 2, Population Density and Cultivated 
Vegetation), and land cover (n = 2, Trees and Flooded Vegetation) 
(Table S2, marked by asterisks). For future (2040–2100) alkalin-
ity/salinity projections, high-resolution future precipitation and air 
temperature were based on the GFDL-ESM4 model from the CHELSA 
data repository (Karger et al., 2017) for three SSPs: SSP126 (Sustain-
ability), SSP370 (Regional Rivalry), and SSP585 (Fossil-fueled Devel-
opment) (Boke-Olén et al., 2017) (Table S3). Global population density 
data (1 km resolution; spanning from 2020 to 2100) for all three SSPs 

were derived from Wang et al. (2022). Future values of the other twelve 
predictor features were assumed to remain constant, and 
watershed-scale local mean historical values were used.

Based on the compiled historic datasets of watershed properties and 
water chemistry, we trained and validated RF models before applying 
them to predict future sodium and alkalinity fluxes using future popu-
lation density, temperature, and precipitation plus the other 12 pre-
dictor variables under three SSP scenarios (SSP126, SSP370, and 
SSP585) for two time periods: 2040 to 2070 and 2070 to 2100. Com-
parisons of population density, temperature, and precipitation across 
the three SSP scenarios and the historical average are presented in 
Figs. S1, S2, S3, and S4.

3. Results and discussion

3.1. Performance evaluation of sodium and alkalinity fluxes prediction 
models

We used 15 features to build RF models to predict future salinity and 
alkalinity fluxes in U.S. rivers. The optimized hyperparameters for both 
models are listed in Table S1. Calculated mean squared errors (MSE) are 
plotted as a function of hyperparameters in Fig. S5. Sodium and alka-
linity prediction models explained 81% and 78% variation in the target 
variable in the hold-out dataset, respectively (Figs. S6a and S7a). 
Calculated residual values showed no statistically significant correlation 
with predicted flux, suggesting strong generalizability in the trained 
models (Figs. S6b and S7b). In addition, we investigated spatiotemporal 
biases in the models predictions by plotting model residuals over space 
and time. Neither model showed spatiotemporal clustering of residuals 
(Figs. S8a and S9a). Furthermore, no statistically significant correlation 
was found between the percentage of monthly data points with >30% 
relative errors and the total number of monthly measurements in each 
state (Figs. S8b and S9b). These results indicate an absence of spatial 
bias in the trained RF models (Carter et al., 2023). As to temporal aspect, 
no specific months exhibited significantly higher erroneous predictions 
for riverine sodium/alkalinity flux, especially when a higher relative 
error threshold of 100% was used to evaluate model performance. To 
sum up, the RF models with 15 features show strong performance and 
generalizability in predicting future salinity and alkalinity fluxes in U.S. 
rivers.

In the model development phase, the averaged absolute SHAP values 
were calculated for each predictor feature. Predictors were ranked based 

Fig. 1. Location of 226 USGS river monitoring sites in this study.
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on their SHAP values illustrating the importance of each feature in flux 
prediction (Fig. 2). For the sodium (salinity) flux model, population 
density emerged as the most important feature. For the alkalinity flux 
model, bedrock geology, temperature, and precipitation were among the 
most important features, suggesting that alkalinity flux is primarily 
governed by natural processes (Fig. 2). These findings align with the 
previous study (E et al., 2023), which indicated that salinity and alka-
linity fluxes are mainly governed by anthropogenic and natural pro-
cesses, respectively. Furthermore, air temperature, a key climatic 
variable, emerged as the second most influential factor in both RF 
models (Fig. 2). This underscores the substantial impact that climate 
change may have on riverine sodium and alkalinity fluxes. In the alka-
linity prediction model, the percentage of watershed underlain by car-
bonate sediment (rather than siliciclastic sediment) was ranked as the 
most important feature. This result is likely due to the kinetic differences 
in mineral weathering rates. In particular, the dissolution of calcite 
minerals of 1 mm of diameter typically takes 10− 1 years, while silicate 
mineral dissolution can take 102 years (Lasaga, 1984). Carbonate 
weathering rates are highly sensitive to environmental conditions, 
including soil moisture, temperature, vegetation, and soil respiration (i. 
e., soil pCO2) (Gaillardet et al., 2019).

Partial Dependence Plot (PDP) and SHAP Dependence Plot (SDP) 
were used to assess how analyte flux varied with key predictor features, 
focusing on population density, temperature, and precipitation 

(Figs. S10 and 3). The PDP shows that increasing population density 
significantly augment riverine sodium flux (Fig. S10). This relationship 
highlights the contribution of anthropogenic activities, such as urban 
runoff. Furthermore, the PDP reveals that sodium flux is substantially 
higher at lower temperatures (below 0 ◦C) compared to higher tem-
peratures (above 10 ◦C), with the peak sodium flux occurring around 2 
◦C (Fig. S10c). The SDP supports this finding, showing a positive cor-
relates between sodium flux and temperatures below 8 ◦C (Fig. S10d). 
These patterns suggest that road salts applied during winter (i.e., lower 
temperature) represent a significant driver of riverine salinity. However, 
it is important to note that these PDPs and SDPs may not fully capture 
the contributions of other human activities, such as effluent discharge, 
on riverine sodium flux. Such activities could influence sodium levels 
independently of temperature. Finally, precipitation generally positively 
correlates with sodium flux (Fig. S10). Higher precipitation leads to 
greater runoff, which enhances solute transport from land surfaces to 
rivers.

SDP and PDP plots show that alkalinity flux is suppressed at colder 
temperatures (<0 ◦C) or much warmer temperatures (>10 ◦C), with the 
optimum temperature being 4 ◦C–10 ◦C (Fig. 3). These observations are 
consistent with previous studies. In particular, Lehmann et al. (2023)
investigated global riverine alkalinity across six continents, from 44◦S to 
51◦N, and suggested that mean annual temperature acts as a first-order 
control on riverine alkalinity concentration. They reported that 5 ◦C–15 
◦C correspond to the most extensive carbonate weathering due to 
abundant water supply and soil acidity. Romero-Mujalli et al. (2019)
proposed that the dependence of the dissolution rate of calcium car-
bonate on land surface temperature can be described by a Gaussian 
function, i.e., a “boomerang-shaped” curve, with peak alkalinity con-
centrations at approximately 11 ◦C. Furthermore, Gaillardet et al. 
(2019) also observed a boomerang-shaped relationship between car-
bonate weathering and temperature, with the optimum temperature 
being 10 ◦C–15 ◦C. Higher temperature will reduce the solubility of 
carbonate and cause more CO2 degassing in carbonate systems. Alka-
linity flux increases with precipitation before reaching a plateau at about 
200 mm/month (Fig. 3). Note that most USGS sites used in this study 
report precipitation values of < 200 mm/month (Fig. 3d). The precipi-
tation SDP shows that river alkalinity flux is suppressed when the pre-
cipitation is < 60 mm/month, above which alkalinity generation is 
promoted as precipitation increases. We hypothesize that this threshold 
of 60 mm/month reflects the average minimum precipitation required 
to generate effective runoff to deliver weathering products to rivers. It is 
important to note that alkalinity can still be generated and transported 
to the river through other mechanisms when precipitation is below 60 
mm/month. Here, we treat precipitation as a proxy of runoff. Runoff is 
controlled by multiple factors including precipitation, temperature, soil 
type, topography, land use, and human activities (Ahmed et al., 2022; 
Grigorev et al., 2022; Hansen et al., 2018; Jiang et al., 2021; Wang et al., 
2022a; Zhou et al., 2023) with precipitation being the primary driver 
(Hewlett, 2009, McDonnell et al., 1967). Similar to alkalinity flux, 
salinity flux also exhibits a “boomerang-shaped” relationship with 
temperature (Fig. S10), with an optimal temperature (maximum salinity 
flux) of approximately 8 ◦C. Multiple watershed processes could 
contribute to this relationship. Among them, we hypothesize that as 
temperature increases, salinity flux initially rises due to enhanced 
weathering processes, but beyond a certain point, the contribution of 
anthropogenic salt inputs (e.g., road salting) may decline as tempera-
tures continue to increase. Further research is needed to better under-
stand these “boomerang-shaped” relationships.

3.2. Human and climate impacts on future riverine sodium flux

Trained RF models were used to predict future sodium and alkalinity 
fluxes using future projections of the 15 predictor features, among which 
three features (air temperature, precipitation, and population density) 
were varying with time or SSP, while the other 12 features were held 

Fig. 2. Predictor feature ranking based on SHAP values from the riverine 
alkalinity flux prediction model based on 15 features (excluding runoff, soil 
moisture, and impervious surface percentage) for (a) sodium flux and (b) 
alkalinity flux. A higher SHAP value indicates the corresponding predictor has a 
higher impact on prediction of the flux of interest.
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constant at their historic values. A detailed description of projected 
future population density, temperature, and precipitation is available in 
the supplementary information. To ensure accuracy, four USGS sites 
(07374525 and 07373420 in Louisiana, and 06934500 and 06818000 in 
Missouri) were excluded when assessing the spatial variability of pre-
dictor features and predicted results. These four sites have watersheds 
that span multiple regions (e.g., northern and southern U.S.), making 
their predicted fluxes less representative of region-specific situations.

By the end of 2100, the model predicts that climate change will lead 
to a change in the U.S. riverine salinity fluxes by 3.28% (SSP126), 
− 11.74% (SSP370), and 7.95% (SSP585). An average warming of 1 ◦C 
across the U.S. has the potential to alter river salinity fluxes by 1.49% 
(SSP126), − 3.33% (SSP370), and 2.02% (SSP585). Over time, both 
future sodium flux and population density show an increase from 
SSP370 to SSP126 then SSP585, suggesting increased anthropogenic 
sodium inputs into rivers through activities, such as irrigation, fertilizer, 

Fig. 3. Partial Dependence Plot (a and c) and SHAP Dependence Plot (b and d) derived from the 15 features based random forest model that predict alkalinity flux. In 
SDP figures (b and d), SHAP values >0 are colored in red, representing a positive contribution to riverine alkalinity fluxes from the corresponding predictor feature. 
Samples in blue denote negative SHAP values, for which predictor feature makes a negative contribution to riverine alkalinity fluxes. Both PDP and SDP visualize the 
relationship between alkalinity flux and predictor features including temperature (a and d) and precipitation (c and d). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Predicted future monthly averaged sodium flux for all three scenarios (SSP126, SSP370, and SSP585) and for both periods of time: (a) 2040 to 2070 and (b) 
2070 to 2100.
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sewage, and industry (Figs. S1a and 4). In the first half of the calendar 
year, future riverine sodium flux is generally lower than historical levels 
(Fig. 4). This reduction is attributed to rising future temperatures during 
winter months (December to February) compared to historical levels 
(Figs. S1b and 4), which may lead to reduced road salt application. 
Lower road salt application not only results in lower salinity level in U.S. 
rivers during winter months but also leads to less storage of road salt in 
soils, riverbanks, and riverbeds. This might explain the observed smaller 
declines in future riverine sodium flux following the winter months (i.e., 
January–June) compared to historical values (Fig. 4). In the second half 
of the calendar year, both future precipitation and sodium flux are 
projected to exceed historical levels (Figs. S1 and 4). Since climatolog-
ical precipitation is typically higher during these months, the increased 
runoff leads to higher salinity transport capacity to rivers. As such, high 
precipitation rates (e.g., >60 mm/month) may amplify salinity flux in U. 
S. rivers during these months.

The change in population density from the present to the future 
differs by scenario. For most states, population density increases under 
SSP126 and SSP585 but declines under SSP370 (Fig. S2). As sodium flux 
is positively correlated with population density, such trends in popula-
tion density can explain the projected increase in riverine sodium fluxes 
in some northern states (e.g., Connecticut, Iowa, Indiana, Washington) 
(Fig. 5). Unlike the northern U.S., the southern and western U.S. show 
little to no increase in future sodium flux, even under scenarios with 
projected increases in population density. This is likely due to the 
limited use of road salts in the southern U.S., where current and future 
winter temperatures rarely fall below freezing. Furthermore, the relative 
increase in future temperature in most southern states is much larger 
than that in future precipitation, which will lead to a projected warmer 
and drier climate (Figs. S3 and S4). While such projected climate pat-
terns in southern states could exacerbate soil salinization, river salini-
zation might not necessarily worsen significantly due to reduced 
discharge, which limits the transport of salts from the watershed to the 
river.

3.3. Human and climate impacts on future riverine alkalinity flux

Over the first half of the year (January–June), future river alkalinity 
flux peaks in March (SSP370 and SSP585) or in April (SSP126) (Fig. 6), 
coinciding with increasing monthly average temperature (Fig. S1b). 
However, projected future alkalinity peak flux is lower than historical 
values during these six months, with the offset beginning to increase in 
February and reaching its maximum in May (Fig. 6). This observation 
likely reflect the temperature control on riverine alkalinity flux. From 
February to June, monthly temperatures increase under all SSPs, and 
move further away from the optimum temperature of 4 ◦C for carbonate 
weathering (Fig. 3). This seasonal deviation from the optimum tem-
perature for carbonate weathering is less pronounced in historical 
temperature. Therefore, future increases in temperature might limit 
carbonate weathering, reducing alkalinity fluxes in U.S. rivers during 
the first half of the year. In the second half of the year (July–December), 
under all three SSP scenarios, future temperatures decrease with month, 
moving towards the optimum temperature of 4 ◦C (Fig. 6). Combined 
with increased future precipitation, this creates conditions favorable for 
carbonate weathering and the transport of alkalinity into rivers. 
Enhanced precipitation during these months increase the watershed 
capacity for flushing and transporting alkalinity in the future. The 
interplay between precipitation and temperature leads to a higher future 
alkalinity flux in rivers during the second half of the year (Fig. 4).

Our model predicts that the U.S. riverine alkalinity flux will vary by 
4.28% (SSP126), − 1.64% (SSP370), and 4% (SSP585) by 2100 due to 
climate change, while an average warming of 1 ◦C across the U.S. has the 
potential to change river alkalinity fluxes by 1.94% (SSP126), − 0.47% 
(SSP370), and 1.02% (SSP585). From 2040 to 2100 under all three 
scenarios, most states reporting a decrease or less than 5% increase in 
riverine alkalinity flux are located in the Midwest, Southeast, and 
Southwest U.S. (Fig. 7), particularly along both sides of the Mississippi 
River. River watersheds in these regions are predominantly underlain by 
carbonate sediments (Fig. S11), which are highly sensitive to 

Fig. 5. U.S. states color coded by relative change in monthly averaged riverine sodium flux in each state [(future value – historical value)/historical value] for both 
periods of time (2040–2070 and 2070 to 2100) and three scenarios (SSP126, SSP370, and SSP585). (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.)
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temperature increases. In these states, projected future increases in 
temperature (Fig. 3) often exceed optimal range for carbonate weath-
ering, i.e., 4◦C–10 ◦C. These temperatures might suppress carbonate 
weathering, lowering the supply of alkalinity into rivers. In contrast, 
states in the Northeast, Northwest, and Pacific regions are mainly un-
derlain by a combination of siliciclastic and unconsolidated sediments 
(Fig. S11). Temperature increases enhance weathering of silicates 
(Banwart et al., 2009; West et al., 2005) and unconsolidated sediments 
(Berner and Berner, 2012). Therefore, projected increases in alkalinity 
flux in these regions are consistent with enhanced weathering of silici-
clastic and unconsolidated sediments.

In the Northeast U.S., soil organic carbon (SOC) is also relatively 
enriched compared to other regions (Fig. S11). The decomposition of 
SOC by microorganisms can lead to the formation of carbonic acid, a 
weak acid which can have varied effects on soil pH. In soils with low 
cation supply capacity, carbonic acid lowers soil pH. In soils with higher 

cation supply capacity, carbonic acid can react with base cations in soil, 
producing alkalinity to buffer the soil exchangeable pH (Cotrufo et al., 
2015; Dong et al., 2022). If a catchment has a higher base cation supply 
than the carbonic acid input flux, the accelerated decomposition of SOC 
associated with rising temperatures could potentially contribute to the 
increase in alkalinity flux in the northeast region (Fig. 7). However, if 
carbonic acid supply from the SOC decomposition overpasses the soil 
buffering capability, soil pH and exchangeable alkalinity can decline.

As presented above, it is critical to predict future salinity and alka-
linity fluxes under projected climate patterns and human activities. To 
address this knowledge gap, this study demonstrates a preliminary 
application of machine learning models to predict future riverine fluxes 
and their interactions with natural and human factors. However, it is 
important to acknowledge several limitations of the dataset and models 
used in this study. For instance, while population density can infer 
impervious surface area, it does not fully capture other critical land-use 

Fig. 6. Predicted future monthly averaged alkalinity flux for all three scenarios (SSP126, SSP370, and SSP585) and for both periods of time: (a) 2040 to 2070 and (b) 
2070 to 2100.

Fig. 7. U.S. states color coded by relative change in monthly averaged riverine alkalinity flux in each state [(future value – historical value)/historical value] for both 
periods of time (2040–2070 and 2070 to 2100) and three scenarios (SSP126, SSP370, and SSP585). (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.)
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changes. Incorporating future high-resolution land-use data (e.g., Hou 
et al., 2022; Zhang et al., 2023) is highly recommended to enhance the 
performance and interpretability of the RF model. Additionally, the RF 
model is still considered “gray box” model, as it cannot provide explicit 
equations to describe the relevant physical processes that dictate the 
nonlinear relationships between salinity or alkalinity fluxes and climatic 
and hydrological conditions. Future research should prioritize 
improving the availability of high-resolution datasets that describe 
critical predictor variables, such as land use and anthropogenic inputs. 
These enhanced datasets would allow for more accurate and represen-
tative modeling of riverine salinity and alkalinity fluxes. In addition, 
efforts should focus on developing more explainable machine learning 
models to better elucidate the nonlinear interactions between predictor 
variables and riverine fluxes.

4. Conclusion

The objective of this study was to identify important drivers of 
salinity and alkalinity fluxes in U.S. rivers and use projected changes in 
these drivers to evaluate how riverine salinity/alkalinity will respond to 
future climate change. The 15 most physically and/or empirically 
important variables were used to build two Random Forest (RF) models 
to predict future (2040–2100) monthly sodium and alkalinity fluxes at 
226 river monitoring sites across the U.S. The RF results showed that 
population density and the percentage of watershed underlain by car-
bonate sediment were the most important features for predicting 
riverine sodium and alkalinity flux, respectively. This suggested that 
variability in riverine salinity is primarily associated with anthropogenic 
forcings (e.g., road salting), whereas variability in riverine alkalinity is 
primarily associated with natural forcings. In addition, air temperature 
ranked second in both models, indicating strong climatic control on both 
riverine sodium and alkalinity fluxes.

Trained RF models were applied to predict future sodium and alka-
linity fluxes in U.S. rivers from 2040 to 2100 under various socioeco-
nomic pathways. Model results showed lower riverine sodium fluxes in 
rivers in the northern U.S., likely due to higher winter temperatures and 
associated reductions in road salting. The southern and western U.S. 
generally showed little to no wintertime increase in sodium flux due to 
little or no road salting. It is important to note that the relatively small 
increases in future precipitation, compared to large increases in future 
temperature in the southern U.S., will lead to a warmer and drier climate 
pattern, which is projected to exacerbate soil and river salinization in 
southern states. Our models also suggested carbonate weathering is 
limited by temperatures above 10 ◦C, which led to lowered riverine 
alkalinity flux in carbonate-dominated watersheds under future climate 
scenarios. This is likely associated with the lower solubility of carbonate 
and increases in CO2 degassing rates at higher temperatures. However, 
in watersheds dominated by siliciclastic and unconsolidated sediments 
or with high soil organic carbon, rising temperatures could accelerate 
silicate weathering or the decomposition of organic carbon, resulting in 
an increase in riverine alkalinity flux.

This work highlights the potential consequences of rising tempera-
tures on river salinization and provides insights into the future chal-
lenges posed by climate-induced changes in riverine alkalinity. The 
prediction results under different SSP scenarios indicate that future 
riverine salinity and alkalinity fluxes are projected to increase across 
most U.S. states. However, under the sustainable development scenario 
(SSP126), the increase in salinity flux is smaller compared to the fossil- 
fuel development scenario (SSP585). For both salinity and alkalinity 
fluxes, climatic and hydrologic variables, such as temperature and pre-
cipitation, emerge as key predictors. This suggests that river water 
quality, with respect to salinity and alkalinity, can be managed by 
mitigating variability in climatic and hydrologic conditions. Overall, 
this study provides critical insights for policymakers and geoscientists 
working towards the sustainable management of river ecosystems in the 
context of ongoing global change.
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