
Inferring End‐Members From Geoscience Data Using
Simplex Projected Gradient Descent‐Archetypal Analysis
Zanchenling Wang1 and Tao Wen1

1Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY, USA

Abstract End‐member mixing analysis (EMMA) is widely used to analyze geoscience data for their end‐
members and mixing proportions. Many traditional EMMA methods depend on known end‐members, which are
sometimes uncertain or unknown. Unsupervised EMMA methods infer end‐members from data, but many
existing ones don't strictly follow necessary constraints and lack full mathematical interpretability. Here, we
introduce a novel unsupervised machine learning method, simplex projected gradient descent‐archetypal
analysis (SPGD‐AA), which uses the ML model archetypal analysis to infer end‐members intuitively and
interpretably without prior knowledge. SPGD‐AA uses extreme corners in data as end‐members or
“archetypes,” and represents data as mixtures of end‐members. This method is most suitable for linear
(conservative) mixing problems when samples with similar characteristics to end‐members are present in data.
Validation on synthetic and real data sets, including river chemistry, deep‐sea sediment elemental composition,
and hyperspectral imaging, shows that SPGD‐AA effectively recovers end‐members consistent with domain
expertise and outperforms conventional approaches. SPGD‐AA is applicable to a wide range of geoscience data
sets and beyond.

Plain Language Summary Earth's materials (e.g., rock, soil, and water) are often mixtures of
different sources. We developed a method, simplex projected gradient‐archetypal analysis, which allows
computers to automatically identify these sources from mixture data by identifying extreme values. We tested
our method on artificial data and real‐world data sets of river solutes, deep‐sea sediments, and airborne images.
Our method is easy to use and can be applied to various geoscience data sets and beyond.

1. Introduction
In geoscience, properties of Earth's materials (e.g., rock, soil, and water) are assessed using various field and
laboratory techniques such as remote sensing and geochemical measurements. These measurements often capture
the combined effects of multiple processes and sources—mathematically conceptualized here as “end‐mem-
bers”—that shape the materials. Quantitatively disentangling mixed data into end‐members is often essential for
studying each individual process or source. End‐member mixing analysis (EMMA) addresses this by identifying
and characterizing end‐members, which represent distinct and extreme sources or processes, and expressing
observational data as their mixing proportions. EMMA has been widely applied across geoscience disciplines. For
example, in catchment hydrogeochemistry, EMMA is used to quantify contributions to riverine solutes from end‐
members like soil water, carbonate weathering, silicate weathering, and atmospheric deposition (e.g., Burns
et al., 2001; Christophersen et al., 1990; Gaillardet et al., 1999; Hooper et al., 1990; Shaughnessy et al., 2021). In
sedimentology, EMMA deciphers grain‐size distributions to reveal sediment sources and transport processes
(e.g., E. Dietze et al., 2012; M. Dietze et al., 2022; Prins & Weltje, 1999; Liu et al., 2024; Vandenberghe, 2013).
Remote sensing applications, termed hyperspectral unmixing, extract material spectra (e.g., water, trees) and their
abundance from multi‐band images (e.g., Bioucas‐Dias et al., 2012; Boardman et al., 1995; Keshava et al., 2000;
Wei & Wang, 2020; Winter, 1999).

A common challenge in classical EMMA is the lack of knowledge of end‐member characteristics, which is crucial
for quantifying their mixing proportions. Here, we use the term, supervised EMMA, to describe cases where end‐
members are assigned a priori and only mixing proportions are to be evaluated. End‐member characteristics can
sometimes be determined from field or laboratory measurements, existing databases, literature, or modeling
results. Supervised EMMA is common in geochemistry (e.g., Dymond, 1981; Gaillardet et al., 1999; Hooper
et al., 1990; van Geen et al., 1988), and is also applied in sedimentology (e.g., Rea & Hovan, 1995) and remote
sensing (e.g., Heinz & Chang, 2001; Khajehrayeni & Ghassemian, 2020; Wyatt & McSween, 2002; Xu
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et al., 2018; Zhu, 2017). However, it falls short when prior end‐member knowledge is incomplete, uncertain, or
unavailable.

To overcome these challenges, emerging unsupervised or blind EMMA methods have been proposed to infer end‐
members (and their mixing proportions) solely from data without prior knowledge. These approaches are gaining
traction across geoscience fields such as hydrogeochemistry (e.g., Shaughnessy et al., 2021; Xu Fei & Har-
man, 2022), sedimentology (e.g., E. Dietze & Dietze, 2019; Renner, 1993; Weltje, 1997; Weltje & Prins, 2007;
Zhang et al., 2020), and remote sensing (e.g., Bioucas‐Dias et al., 2012; Plaza et al., 2004; Wei & Wang, 2020).
Among them, non‐negative matrix factorization (NMF) (Lee & Seung, 1999) and its variants stand out as popular
tools, particularly in hyperspectral unmixing (e.g., Hoyer, 2002; Iordache et al., 2011; Jia & Qian, 2009; Lu
et al., 2013, 2014; Miao & Qi, 2007; Qian et al., 2011; Zhou et al., 2020; Zhu et al., 2014; Zhuang et al., 2019), and
more recently in hydrogeochemistry (Epuna et al., 2022; Shaheen et al., 2022; Shaughnessy et al., 2021; Xu Fei &
Harman, 2022). However, challenges remain with NMF‐based EMMA tools: many are not self‐contained,
requiring other algorithms for data pre‐processing, parameter tuning, and post‐processing. Furthermore, they
often fail to enforce sufficient optimization under strict unit simplex constraints, meaning the mixing proportions
for derived end‐members must sum to unity. Instead, they use penalty terms or manual transform to loosely satisfy
such constraints. These issues hamper the accuracy and interpretability of these NMF methods.

Here, we propose an intuitive and interpretable unsupervised EMMA method, simplex projected gradient
descent–archetypal analysis (SPGD‐AA), based upon the unsupervised machine learning model, archetypal
analysis (AA) (Cutler & Breiman, 1994). AA represents each observational data point as a mixture of a set of
extreme points, referred to as “pure types” or “archetypes.” AA and its variants (e.g., Abrol & Sharma, 2020;
Alcacer et al., 2024; Dijk et al., 2019; Javadi & Montanari, 2020; Keller et al., 2019; Mørup & Hansen, 2012; Seth
& Eugster, 2016) have been applied to a wide range of tasks, including galaxy spectra classification (Chan
et al., 2003), biological task inference (Hart et al., 2015), document summarization (Canhasi & Kono-
nenko, 2014), extreme climate pattern identification (Steinschneider & Lall, 2015) and hyperspectral unmixing
(Zouaoui et al., 2023). However, AA remains largely underutilized in geosciences. Since AA's inception, many
efforts have been made to improve its performance and robustness (Abrol & Sharma, 2020; Bauckhage &
Thurau, 2009; Chen et al., 2014; Damle & Sun, 2017; Mørup & Hansen, 2012). However, many of them aim for
faster but approximate solutions, often introducing complex optimization methods that make AA harder to
implement and understand. Moreover, well‐maintained, open‐source and high‐performance implementations of
AA remain lacking, limiting its broader applications. Our SPGD‐AA method addresses these issues by employing
fast unit simplex projection (Condat, 2016) along with projected gradient descent (PGD) (Wright & Recht, 2022)
in the optimization procedure of AA. The algorithm is hosted in the Python package archetypes (Alcacer &
Wang, 2025), with performance‐critical components written in Cython (Behnel et al., 2011) to maintain
computational efficiency while ensuring convergence to an exact local minimum under strict unit simplex
constraints. We demonstrate SPGD‐AA's effectiveness in inferring end‐members using synthetic data and real‐
world data sets from three geoscience domains: Panola Mountain stream chemistry (Hooper & Christo-
phersen, 1992; Hooper et al., 1990), Nazca Plate sediment elemental composition (Dymond, 1981; Pisias
et al., 2013), and Jasper Ridge hyperspectral image (Zhu, 2017). These data sets, extensively studied for end‐
member characteristics, enable us to validate SPGD‐AA's ability to recover end‐members derived from
domain knowledge and compare its performance to other state‐of‐the‐art unsupervised EMMA methods.

2. Data and Methods
2.1. General Mathematical Form of End‐Member Mixing Analysis

Let X denote an m × n data set matrix [x1 x2 … xn], each column (xi) representing an observational data
point with m features. The values in X may indicate observed properties (e.g., chemical composition).

In EMMA, we consider p end‐members that constitute the sources of the mixed observations, each described by a
m‐dimensional column vector ej ( j = 1,2,… ,p). EMMA approximates each observation xi as a mixture of end‐
members x̂i:

xi ≈ x̂i =∑

p

j=1
ejaji = Eai, aji ≥ 0 and ∑

p

j=1
aji = 1, i = 1,2,… ,n, (1)
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where aji is the mixing proportion of the j‐th end‐member in the i‐th observation, ai = [a1i a2i … api]
⊤, and

E denotes the m × p end‐member characteristic matrix [e1 e2 … ep]. Mixing proportions must be non‐
negative and sum to 1, that is, ai is constrained within the p − 1‐dimensional unit simplex Δp− 1. With this
constraint, the approximation x̂i is a convex combination of end‐members {e1,e2,… ,ep}.

Let A denote the p × n mixing proportion matrix [a1 a2 … an]. Equation 1 can be rewritten in a more
compact form:

X ≈ EA. (2)

Any convex combinations of end‐members must lie within their convex hull (the smallest convex polygon or
polytope enclosing a point set, e.g., the gray triangle in Figure 1). A mixing model is valid only when most
observations X lie within or near the convex hull of end‐members. In supervised EMMA, the end‐member matrix
E is known or assumed, and mixing proportions A are typically estimated using ordinary or constrained least

Figure 1. A schematic diagram of end‐member mixing analysis and archetypal analysis (AA) (2‐dimensional observational
data and 3 archetypes). Observations (blue dots), as strict mixtures of end‐members (gray stars), lie inside the convex hull of
end‐members (gray triangle). AA searches for a set of archetypes (orange stars) within the data convex hull (dash‐dotted gray
polygon), to approximate observations as mixtures of these archetypes (blue circles). The objective is to minimize the
residual sum of squared distances (red lines) between true observations and their approximations. The best approximations
are projections of true observations onto the archetypal convex hull (orange triangle).
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squares, for example, non‐negative least squares (NNLS) (Bro & De Jong, 1997; Lawson & Hanson, 1995) and
fully constrained least squares (Heinz & Chang, 2001).

2.2. Archetypal Analysis

In unsupervised EMMA, the only information available is that mixture data lie inside or at least close to the
convex hull of end‐members, which is to be reconstructed. When all data points are far from pure end‐members,
the convex hull of data most likely does not resemble the end‐member convex hull. This is to say, information is
insufficient to determine the true end‐members solely from data without prior knowledge. When the requirements
of unsupervised EMMA are satisfied, AA provides an interpretable and reasonable solution of finding end‐
members by searching for a set of p “archetypes” {e1,e2,… ,ep} that represent extreme patterns outlines the
principal convex hull of the data set (Mørup & Hansen, 2012), and representing data points as mixtures of ar-
chetypes (Figure 1). In this way, AA aligns naturally with the goal of inferring end‐members from data. Classic
AA restricts archetypes to the data convex hull, which means archetypes are either observations themselves or
mixtures of observations:

ej =∑
n

i=1
xibij = Xbj, bij ≥ 0 and ∑

n

i=1
bij = 1, j = 1,2,… ,p, (3)

where bj = [b1j b2j … bnj]
⊤ ∈ Δn− 1. Define n × p matrix B = [b1 b2 … bp] then we get

E = XB. (4)

Combining Equations 2 and 4, we have

X ≈ X̂ = XBA, (5)

where X̂ is the reconstructed approximations of observations.

AA simultaneously searches for optimal archetypes and mixing proportions that minimize the reconstruction
error, defined as the residual sum of squares (RSS) between the original observations and approximations:

RSS = ‖X − XBA‖2
F, (6)

subject to column‐wise unit simplex constraints on B and A, where ‖⋅‖F denotes the Frobenius norm. For any set
of archetypes, RSS is minimized when all approximations are projections of observations onto the archetypal
convex hull. Thus, AA minimizes the sum of squared distances from outliers to the archetypal convex hull
(dashed gray lines in Figure 1). When p = 1, the optimal archetype is simply the center of mass of the data (Cutler
& Breiman, 1994). When p> 1, AA becomes a constrained non‐convex optimization problem, typically solved by
alternatingly updates of B and A, starting from initial guesses B0 and A0. The two optimization subproblems are
often solved with NNLS (Bauckhage & Thurau, 2009; Cutler & Breiman, 1994; Damle & Sun, 2017; Eugster &
Leisch, 2009, 2011) or other approximate algorithms (Abrol & Sharma, 2020; Bauckhage et al., 2015; Mørup &
Hansen, 2012), which usually don't strictly enforce unit simplex constraints. Our focus is to provide an approach
that converges to an exact local minimum of RSS.

2.3. Simplex Projected Gradient Descent Method

Though some other precise optimization methods for AA have been proposed (Chen et al., 2014; Zouaoui
et al., 2023), a generalizable and intuitive approach is PGD (Wright & Recht, 2022). PGD iteratively updates the
solution by moving against the direction of the gradient of the target function, and projects the new solution onto
the feasible set (the unit simplex, in AA's case) after each update:

xi+1 = P(xi − α∇f (xi)), i = 1,2,… (7)
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where f (x) is the target function (RSS) to be minimized, P denotes the projection operator onto the feasible set, α
is the step size, and ∇f (x) is the gradient of f at x. A pseudo‐PGD method for AA is first proposed by Mørup and
Hansen (2012), using ℓ1 normalization instead of unit simplex projection and modifying gradients accordingly.
This method works in practice but lacks theoretical guarantees. Our SPGD‐AA adopts a fast unit simplex pro-
jection algorithm (Condat, 2016) for a standard alternating PGD that converges to a local RSS minimum, and is
expected to converge to a global minimum with a proper initialization. We initialize A as a zero matrix with one
randomly placed one per column, and B using a Furthest‐sum method (Mørup & Hansen, 2012). Step sizes are
dynamically adjusted during optimization, also following Mørup and Hansen (2012). Further details are provided
in Text S1 in Supporting Information S1.

2.4. Data Sets

2.4.1. Synthetic Data Sets

We generated two synthetic data sets based on four hypothesized end‐members (Table S1 in Supporting Infor-
mation S1) with and without added noise, each with 1,000 samples. Mixing proportions were sampled from a flat
Dirichlet distribution (a Dirichlet distribution with all α = 1, the “uniform” distribution on the unit simplex)
(Bishop, 2016), ensuring equal likelihood for all feasible proportions. In the noise‐free data set, all data points are
strict mixtures of end‐members. The noisy data set mimics real‐world scenarios where end‐members fluctuate,
and observations are subject to uncertainties due to undetected sources, nonlinear mixing, or measurement errors.
To generate this data set, we added Gaussian noise (standard deviation σ = 0.1) to each feature of each end‐
member before mixing, followed by additional Gaussian noise (σ = 0.1) applied to each feature of resulting
mixtures. A few negative values in the noisy data set were replaced with zeros to maintain compatibility with
compared unsupervised EMMA methods like NMF. Additionally, we generated two noise‐free data sets with the
same end‐members but larger values (2 and 4) for all α in the Dirichlet distribution. Increasing α alters the
uniformly distributed characteristics, suppresses the likelihood of extreme mixing proportions, thereby reducing
the probability of sampling near end‐members. When the sample size is limited, larger α values make it more
likely that no samples will be drawn close to the end‐members.

2.4.2. Panola Mountain Stream Chemistry

Panola Mountain Research Watershed (PMRW), located in Georgia, USA, is a long‐term research site for small
catchment biogeochemistry. This 41‐ha catchment is underlain by granodiorite, covered with old, highly
weathered soil, entirely forested, and situated in a warm temperate subtropical climate (Hooper, 2001; Hooper &
Christophersen, 1992). The data set includes the concentration of six solutes (alkalinity, sulfate, sodium, mag-
nesium, calcium and dissolved silica) in 905 stream water samples collected in PMRW from 1 October 1985 to 30
September 1988 (Hooper, 2001; Hooper et al., 1990). Hooper et al. (1990) suggested that the streamwater
chemistry of these solutes can be explained as conservative (non‐reactive) mixtures of three soil water end‐
members: groundwater (dominant during dry summer months), hillslope (dominant during wet winter and storms)
and organic horizon (influencing during high‐flow conditions). These end‐members were characterized from soil
solutions collected at PMRW, showing distinct and stable chemical compositions across space and time
(Christophersen et al., 1990; Hooper et al., 1990). This mixing model is further investigated and validated in later
studies (e.g., Christophersen & Hooper, 1992; Hooper & Christophersen, 1992; Xu Fei & Harman, 2022).

2.4.3. Nazca Plate Sediments

The Nazca Plate sediment data set includes the abundance of eight elements (Al, Si, Fe, Mn, Cu, Ni, Zn, and Ba)
in 327 deep‐sea surface sediment samples, reported on a carbonate‐free basis (Dymond, 1981; Pisias et al., 2013).
These samples were collected across Nazca Plate, an oceanic tectonic plate in the southeastern Pacific Ocean
basin off the west coast of South America. Dymond (1981) used linear programming on the data set to quantify
the contributions from five end‐members: hydrothermal, detrital, biogenic, authigenic (hydrogenous) sediments,
and dissolution residue. Elemental ratios of the hydrothermal end‐member were derived from samples near the
crest of East Pacific Rise where hydrothermal sediments dominate. The dissolution residue end‐member was
based on domain knowledge, while others were determined from literature. The model succeeded in explaining
sources of major elements in sediments, though some discrepancies in modeled versus observed values for Mn,
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Ni, Cu, and Zn suggested that these minor elements may deviate from the constant‐value assumption of end‐
member modeling (Dymond, 1981).

2.4.4. Jasper Ridge Hyperspectral Image

Jasper Ridge data set is a 100 × 100 pixel hyperspectral image of the Jasper Ridge biological preserve, Cali-
fornia, USA, captured by the AVIRIS sensor (Zhu, 2017). Each pixel originally records reflectance spectra at 224
bands (380–2,500 nm). After removing 26 bands affected by water vapor and atmospheric interference, 198 bands
remain. Four end‐members—road, soil, water, and tree—were identified by selecting “pure” pixels from the
image that closely match reference spectra from spectral libraries (Zhu, 2017; Zhu et al., 2014). This data set is
widely used as a benchmark in hyperspectral unmixing studies (e.g., Li & Tan, 2024; Ozkan et al., 2019; Xiong
et al., 2022; Xu et al., 2020; Zhang et al., 2018; Zhou et al., 2020; Zhu et al., 2014).

2.5. Experimental Setup

For a just comparison with other unsupervised EMMA methods in previous studies, we rescaled each feature
(solute) in the Panola data set to unit variance (and rescale the results back) following Xu Fei and Harman (2022),
and converted the Nazca data set's elemental abundances to weight fractions relative to the total of all eight el-
ements, following Leinen and Pisias (1984). The only required parameter for SPGD‐AA is the number of ar-
chetypes (end‐members) p, which is also adopted from previous studies: 3 for the Panola data set, 4 for the Jasper
data set, and 5 for the Nazca data set. In all our experiments, to balance accuracy and runtime, we set additional
parameters for the number of AA instances and step size adjustment (see Text S1 in Supporting Information S1).
For synthetic data sets, we also ran three other unsupervised EMMA algorithms, NMF by Shaughnessy
et al. (2021), convex hull end‐member mixing analysis (CHEMMA) (Xu Fei & Harman, 2022), and entropic
descent archetypal analysis (EDAA) (Zouaoui et al., 2023) for comparison with SPGD‐AA.

3. Results and Discussion
3.1. Synthetic Data Sets

For both noise‐free and noisy data sets with mixing proportions drawn from a flat Dirichlet distribution, SPGD‐
AA end‐members closely approximate the true ones (Figure 2). This shows that, by restricting the end‐members
within the data convex hull, SPGD‐AA gains some robustness against noise. Modeled mixing proportions also
align well with true ones, with a R2 of 0.995 for the noise‐free data set and 0.851 for the noisy data set (Figure S1
and Table S3 in Supporting Information S1). Adding noise to synthetic samples alters their characteristics,
impacting the accurate estimation of mixing proportions. In contrast, NMF, whose results tend to be sparse and
extend beyond the data convex hull, failed to precisely recover end‐members, especially in the presence of noise.
EDAA was able to partially recover some features of end‐members with less precision, yet the inferred end‐
members do not coincide with the corners of data point cloud, possibly due to improper default parameters or
model selection procedure. CHEMMA produced results comparable to SPGD‐AA, but all SPGD‐AA end‐
members in both data sets have smaller Euclidean distances to the true ones, that is, higher accuracy (Table
S2 in Supporting Information S1). CHEMMA's lower precision likely arises from its reliance on 2D projection to
subsample the data convex hull (Thurau et al., 2011), so that only a subset of data convex hull is used in
determining end‐members with most internal points ignored. In SPGD‐AA, all original data points are taken into
account without subsampling the data convex hull, better preserving the integrity of data. Both CHEMMA and
SPGD‐AA require multiple runs with different random initializations, but they differ in how the outputs are
handled. CHEMMA aggregates these outputs by constrained clustering to estimate the distribution and mean/
median position of end‐members, which could serve as a prior distribution in Bayesian‐based methods. In SPGD‐
AA, we selected only the result with the smallest RSS as the final point estimate of end‐members, disregarding all
other suboptimal local minima to increase accuracy and maintain interpretability. This practice also enables
SPGD‐AA to infer end‐members and mixing proportions simultaneously, whereas in CHEMMA, mixing pro-
portions must be evaluated under looser constraints after clustering. Finally, CHEMMA's dependent packages are
outdated, with some of them incompatible with Python 3. SPGD‐AA is more straightforward and easier to access.

For additional data sets with higher concentration parameters α in the Dirichlet distribution, most unsupervised
EMMA becomes less or even not feasible as data are more concentrated to the center of the end‐member polytope,
and SPGD‐AA results move further away from true end‐members to the center of the data cloud, as shown in
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Figure S2 in Supporting Information S1. Though NMF seems to outperform other methods sometimes, it actually
relies on selecting results and ranking end‐members based on prior knowledge or assumptions (see the footnote of
Table S2 in Supporting Information S1), forcing the results to exhibit certain properties. Combined with NMF's
lack of a convex hull constraint and its inherent sparsity, these factors may occasionally lead to better results.
However, this outperformance is not consistent or generalizable. As shown in Figure S3 in Supporting Infor-
mation S1, When all features of each end‐member are uniformly shifted by +10, SPGD‐AA remains stable and
produces consistent results, whereas NMF fails and returns empty outputs.

3.2. Panola Mountain Stream Chemistry

The inferred end‐members share similar characteristics with the soil solutions from field sampling Hooper
et al. (1990) (Figures 3a and 3d), indicating that SPGD‐AA successfully recovered the end‐members determined
from field studies. Our results also support the conclusion of Hooper et al. (1990) that PMRW streamwater
chemistry can be modeled as mixtures of soil water end‐members. The recovered organic end‐member somewhat

Figure 2. Results of simplex projected gradient descent‐archetypal analysis (SPGD‐AA) on synthetic data sets, compared
with non‐negative matrix factorization (NMF) (Shaughnessy et al., 2021), convex hull end‐member mixing analysis
(CHEMMA) (Xu Fei & Harman, 2022) and EDAA (Zouaoui et al., 2023). (a) True end‐members of noise‐free synthetic data
sets, compared with those inferred by SPGD‐AA, NMF, CHEMMA, and EDAA. (b) Noise‐free synthetic data, with true and
inferred end‐members, visualized in the 3D principal component subspace of the data set. Panels (c) and (d) are similar to
panels (a) and (b), but for the noisy synthetic data set. Detailed end‐member values are provided in Table S2 in Supporting
Information S1.
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deviates from field values but better captures the boundary condition of streamwater observations in the 2D
principal component (PC) subspace of the data set (Figure 3d). The field organic end‐member is insufficient to
explain a few extreme samples, which may be due to some undescribed end‐members, non‐conservative mixing
or dilution/concentration. Compared to CHEMMA‐derived end‐members (Xu Fei & Harman, 2022) (Figures 3c
and 3d), SPGD‐AA produces similar results but in a more concise and interpretable way as discussed. We
evaluated the goodness of fit of SPGD‐AA, CHEMMA and field end‐members by computing their relative
reconstruction error RSS/RSS(1), where RSS is the RSS for a given set of end‐members, and RSS(1) is the RSS
when using only the data centroid as the sole end‐member (Cutler & Breiman, 1994). The mixing proportions of
CHEMMA and field end‐members were estimated by solving simplex constrained least squares using simplex
projected gradient descent (SPGD). The results are 0.074 for SPGD‐AA, 0.087 for CHEMMA and 0.108 for field
end‐members. All values are much smaller than 1 and close to 0, meaning that the overall projection distances
between outliers and the end‐member polytope are relative small, so that most of the variance in the data can be
effectively explained by the mixing of either set of end‐members. The smallest reconstruction error of SPGD‐AA
indicates that it best captures the mixing space. CHEMMA end‐members has a smaller reconstruction error than
field end‐members, which agrees with the result of Xu Fei and Harman (2022).

3.3. Nazca Plate Sediments

At least four of the five end‐members inferred by SPGD‐AA closely resemble those identified by
Dymond (1981), particularly in terms of major elemental composition (Figure 4). Minor elements, with low
values and potential violations of EMMA assumptions, have little impact on SPGD‐AA results and were not
further investigated. The dissolution residue end‐member determined by Dymond (1981) shows more discrep-
ancy with our results, as no sample is close to its pure form (refer to the 3.5 section for details). However, SPGD‐
AA successfully identified an archetype near this end‐member within the data convex hull (yellow triangle in
Figure 4d). Leinen and Pisias (1984) used Q‐mode factor analysis (QFA) to infer end‐members from the same
data set. Compared to QFA results (Figures 4c and 4d), the SPGD‐AA end‐members are generally closer the ones
of Dymond (1981) (except for the dissolution residue) in the 3D PC subspace of the data set, and better capture the

Figure 3. Results of simplex projected gradient descent‐archetypal analysis (SPGD‐AA) on Panola Mountain Stream
Chemistry data set, compared with field samples and the convex hull end‐member mixing analysis (CHEMMA) results.
(a) Median solute concentrations of three soil water end‐members determined from field sampling (Hooper et al., 1990):
groundwater (GW), hillslope (HS) and organic horizon (OR). (b) End‐members inferred from SPGD‐AA, rearranged and
renamed to match (a). (c) Mean end‐members inferred from CHEMMA (Xu Fei & Harman, 2022). (d) Streamwater
observations and end‐members from panels (a) to (c) shown in the 2D principal component subspace of data set. Details of
end‐members are available in Table S4 in Supporting Information S1.
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data set's boundary conditions. QFA produced an unrealistic estimation of the authigenic end‐member (Leinen &
Pisias, 1984), which is far from both SPGD‐AA and Dymond (1981) results. Additionally, QFA requires each
sample to sum to a constant (e.g., values representing weight percentages) (Miesch, 1976), limiting is broader
applications.

3.4. Jasper Ridge Hyperspectral Image

SPGD‐AA successfully recovered all four end‐members in the Jasper Ridge image (Figure 5a). The inferred end‐
members are closer to the expert‐determined ground truth (GT) than those derived from classic NMF methods like
ℓ1‐NMF (Iordache et al., 2011) and ℓ1/2‐NMF (Qian et al., 2011), and are comparable to recent neural network
approaches such as SNMF‐Net (Xiong et al., 2022), in terms of spectral angle distance (SAD, angle between GT
and corresponding inferred end‐member vectors) metrics (Figure 5b). Zouaoui et al. (2023) used AA with active‐
set (Chen et al., 2014) and entropic descent (Beck & Teboulle, 2003) optimizers to unmix the Jasper Ridge image.
Their results suggest that AA outperform NMF‐based and neural network methods, which failed to precisely
identify the road end‐member. Interestingly, other studies reported better performance for these competitive
methods on the same data set (e.g., Ozkan et al., 2019; Qi et al., 2023). This discrepancy can be explained by the
uncommon ℓ2‐normalization applied by Zouaoui et al. (2023). This preprocessing step, which maps observations
onto the unit hypersphere, alters the data set's geometry, and potentially violates the EMMA assumption that data
lie within a convex polytope of end‐members. SPGD‐AA results show that normalization is not needed for this
task.

3.5. Limitations

It is worth noting that SPGD‐AA has several limitations. First, as stated above, the feasibility and accuracy of
SPGD‐AA and other unsupervised EMMA methods depend on the proximity of data convex hull to the polytope
of end‐members. When there are data points with higher purity in terms of mixing proportions, SPGD‐AA
generally gets better results. Though there are relaxed variants of AA (e.g., Javadi & Montanari, 2020; Mørup

Figure 4. Results of simplex projected gradient descent‐archetypal analysis (SPGD‐AA) on Nazca Plate sediment data set.
Panels (a–c) show the elemental fractions of end‐members (detrital or D, hydrothermal or H, biogenic or B, authigenic or A,
dissolution residue or R) determined by Dymond (1981), inferred by SPGD‐AA (rearranged to match (a)) and identified by
Q‐mode factor analysis (Leinen & Pisias, 1984), respectively. Panel (d) visualizes sediment samples and end‐members from
panels (a) to (c) in the 3D principal component subspace of the elemental fraction data. Additional angles of view of panel
(d) are provided in Figure S4 in Supporting Information S1. Detailed end‐member characteristics are in Table S5 in
Supporting Information S1.

JGR: Machine Learning and Computation 10.1029/2024JH000540

WANG AND WEN 9 of 14

 29935210, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000540 by T
ao W

en - Syracuse U
niversity L

ibraries , W
iley O

nline L
ibrary on [30/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



& Hansen, 2012) and other EMMA variants (e.g., Zhang et al., 2020) that allows extrapolating archetypes or end‐
members outside the data convex hull, this may yield unrealistic results. Besides, these methods have to introduce
additional tunable parameters that need to be determined with prior knowledge, making them less interpretable
and less generalizable.

The second is related to the determination of the number of end‐members p. In our experiments, p is assumed to be
known, and determining p automatically from data remains a challenge. In AA, increasing p reduces
RSS( p)/RSS(1) and improves goodness of fit, but may also introduce excessive and uninterpretable end‐
members. In the absence of prior information, a common heuristic is to run AA with different p values, and
manually select the “elbow” point where the RSS(p)/RSS(1) curve starts to flatten (e.g., Cutler & Breiman, 1994;
Epifanio et al., 2013; Seth & Eugster, 2016).

Figure 5. Results of simplex projected gradient descent‐archetypal analysis (SPGD‐AA) on the Jasper Ridge hyperspectral
image. (a) ℓ1‐normalized reflectance spectra of expert‐determined ground truth (GT, solid lines) and SPGD‐AA end‐
members (dashed lines): tree, soil, water and road. (b) Spectral angle distances (SADs, in radians) between GT and end‐
members inferred by SPGD‐AA and other methods. Comparative results are compiled from Zouaoui et al. (2023) (entropic
descent archetypal analysis with ℓ2‐normalization), Xu et al. (2020) (ℓ1‐NMF and ℓ1/2‐NMF), and Xiong et al. (2022) (SNMF‐
Net). SPGD‐AA end‐member values are stored in Table S6.
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We find, however, some real geoscience data sets show no discernible elbows in the curve that match our domain
knowledge, as these data sets can be noisy and highly imbalanced, with data primarily clustered around certain
end‐members while others are underrepresented. For example, consider a system with three end‐members where
most observations lie along the segment between two end‐members, and only a few are close to the third.
Increasing p from 2 to 3 may not significantly reduce RSS(p)/RSS(1), as most observations can already be
effectively explained with two end‐members. Whether to include the third end‐member or treat it as noise or an
outlier depends on domain knowledge. Therefore, it is recommended to use the elbow criterion only as a
reference, run AA with different values of p and decide on an appropriate number based on consistency with
domain expertise and interpretability.

4. Conclusions
Experimental results on synthetic data and real‐world geoscience data sets demonstrate SPGD‐AA's potential as
an interpretable and widely applicable method for unsupervised EMMA. When applying SPGD‐AA, users must
be mindful of the assumptions underlying EMMA: end‐members have distinct characteristics whose variability is
much smaller than that of the mixed observations, and the mixing should be linear and conservative (non‐reactive)
for observations to be modeled effectively as mixtures of end‐members. SPGD‐AA, like other unsupervised
EMMA methods, would fail if no observations are extreme enough to represent true end‐members. We
recommend validating SPGD‐AA results with domain expertise to ensure inferred end‐members are meaningful.

SPGD‐AA can complement supervised EMMA by identifying overlooked end‐members in prior knowledge and
guiding targeted field sampling to further constrain end‐member characteristics. The concepts of RSS and PGD
can be adapted to supervised EMMA to improve computational accuracy and assess model validity. Future work
could focus on improving optimization robustness (e.g., using stochastic gradient descent to avoid local minima),
developing AA variants like kernel‐AA (e.g., Abrol & Sharma, 2020; Javadi & Montanari, 2020; Mørup &
Hansen, 2012), and exploring the uncertainty of inferred end‐members as in Xu Fei and Harman (2022). It is
essential to unify terminology and establish common cyberinfrastructure across domains, to facilitate interdis-
ciplinary collaboration and maximize SPGD‐AA's potential to address geoscience questions.

Data Availability Statement
All data and scripts for performing SPGD‐AA, along with end‐members inferred by SPGD‐AA are available on
GitHub (https://github.com/WEN‐Research‐Group/endmembers) and Zenodo (Wang, 2025). The source code of
SPGD‐AA (in the archetypes Python package) is available either on Github (https://github.com/aleixalcacer/
archetypes) or Zenodo (Alcacer & Wang, 2025).
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